Gerald has problems with his balance. his problems are probably due to difficulties with his:

journal article

Reason and Power in Benjamin Franklin's Political Thought

The American Political Science Review

Vol. 47, No. 4 (Dec., 1953)

, pp. 1092-1115 (24 pages)

Published By: American Political Science Association

//doi.org/10.2307/1951127

//www.jstor.org/stable/1951127

Read and download

Log in through your school or library

Alternate access options

For independent researchers

Read Online

Read 100 articles/month free

Subscribe to JPASS

Unlimited reading + 10 downloads

Read Online (Free) relies on page scans, which are not currently available to screen readers. To access this article, please contact JSTOR User Support . We'll provide a PDF copy for your screen reader.

With a personal account, you can read up to 100 articles each month for free.

Get Started

Already have an account? Log in

Monthly Plan

  • Access everything in the JPASS collection
  • Read the full-text of every article
  • Download up to 10 article PDFs to save and keep
$19.50/month

Yearly Plan

  • Access everything in the JPASS collection
  • Read the full-text of every article
  • Download up to 120 article PDFs to save and keep
$199/year

Log in through your institution

Journal Information

The American Political Science Review (APSR) is the longest running publication of the American Political Science Association (APSA). APSR, first published in November 1906 and appearing quarterly, is the preeminent political science journal in the United States and internationally. APSR features research from all fields of political science and contains an extensive book review section of the discipline. In its earlier days, APSR also covered the personal and personnel items of the profession as had its predecessor, the Proceedings of the APSA.

Publisher Information

Founded in 1903, the American Political Science Association is the major professional society for individuals engaged in the study of politics and government. APSA brings together political scientists from all fields of inquiry, regions, and occupational endeavors. While most APSA members are scholars who teach and conduct research in colleges and universities in the U.S. and abroad, one-fourth work outside academe in government, research, organizations, consulting firms, the news media, and private enterprise. For more information about the APSA, its publications and programs, please see the APSA website.

Rights & Usage

This item is part of a JSTOR Collection.
For terms and use, please refer to our Terms and Conditions
The American Political Science Review © 1953 American Political Science Association
Request Permissions

1. Reference deleted.

2. Albert, M. L., S. F. Pearce, L. M. Francisco, B. Sauter, P. Roy, R. L. Silverstein, and N. Bhardwaj. 1998. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188:1359-1368. [PMC free article] [PubMed] [Google Scholar]

3. Albus, A. M., E. C. Pesci, L. J. Runyen-Janecky, S. E. West, and B. H. Iglewski. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179:3928-3935. [PMC free article] [PubMed] [Google Scholar]

4. Allan, J. D., A. Mason, and A. D. Moss. 1973. Nutritional supplementation in treatment of cystic fibrosis of the pancreas. Am. J. Dis. Child. 126:22-26. [PubMed] [Google Scholar]

5. Allewelt, M., F. T. Coleman, M. Grout, G. P. Priebe, and G. B. Pier. 2000. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect. Immun. 68:3998-4004. [PMC free article] [PubMed] [Google Scholar]

6. Andersen, D. H. 1938. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. Am. J. Dis. Child. 56:344-399. [Google Scholar]

7. Andersen, D. H., and R. G. Hodges. 1946. Celiac syndrome: genetics of cystic fibrosis of pancreas with consideration of etiology. Am. J. Dis. Child. 72:62-80. [PubMed] [Google Scholar]

8. Anderson, M. P., H. A. Berger, D. P. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. 1991. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775-784. [PubMed] [Google Scholar]

9. Anderson, M. P., D. P. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. 1991. Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679-682. [PubMed] [Google Scholar]

10. Arens, R., D. Gozal, K. J. Omlin, J. Vega, K. P. Boyd, T. G. Keens, and M. S. Woo. 1994. Comparison of high frequency chest compression and conventional chest physiotherapy in hospitalized patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 150:1154-1157. [PubMed] [Google Scholar]

11. Armstrong, D. S., K. Grimwood, J. B. Carlin, R. Carzino, A. Olinsky, and P. D. Phelan. 1996. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr. Pulmonol. 21:267-275. [PubMed] [Google Scholar]

12. Baggenstoss, A. H., M. H. Power, and J. H. Grindlay. 1951. Further studies on the pathogenesis of fibrocystic disease of the pancreas. Arch. Pathol. 51:510-517. [PubMed] [Google Scholar]

13. Bals, R., X. Wang, Z. Wu, T. Freeman, V. Bafna, M. Zasloff, and J. M. Wilson. 1998. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Investig. 102:874-880. [PMC free article] [PubMed] [Google Scholar]

14. Bardana, E. J., Jr., K. L. Sobti, F. D. Cianciulli, and M. J. Noonan. 1975. Aspergillus antibody in patients with cystic fibrosis. Am. J. Dis. Child. 129:1164-1167. [PubMed] [Google Scholar]

15. Bauernfeind, A., G. Emminger, G. Horl, B. Lorbeer, B. Przyklenk, and C. Weisslein-Pfister. 1987. Selective pressure of antistaphylococcal chemotherapeutics in favour of Pseudomonas aeruginosa in cystic fibrosis. Infection 15:469-470. [PubMed] [Google Scholar]

16. Bear, C. E., C. H. Li, N. Kartner, R. J. Bridges, T. J. Jensen, M. Ramjeesingh, and J. R. Riordan. 1992. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809-818. [PubMed] [Google Scholar]

17. Berger, H. A., M. P. Anderson, R. J. Gregory, S. Thompson, P. W. Howard, R. A. Maurer, R. Mulligan, A. E. Smith, and M. J. Welsh. 1991. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Investig. 88:1422-1431. [PMC free article] [PubMed] [Google Scholar]

18. Berkower, C., and S. Michaelis. 1991. Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. Embo. J. 10:3777-3785. [PMC free article] [PubMed] [Google Scholar]

19. Berry, H. K., F. W. Kellogg, M. M. Hunt, R. L. Ingberg, L. Richter, and C. Gutjahr. 1975. Dietary supplement and nutrition in children with cystic fibrosis. Am. J. Dis. Child. 129:165-171. [PubMed] [Google Scholar]

20. Bertranpetit, J., and F. Calafell. 1996. Genetic and geographical variability in cystic fibrosis: evolutionary considerations. Ciba Found. Symp. 197:97-114; discussion 114-118. [PubMed] [Google Scholar]

21. Bhargava, V., J. F. Tomashefski, Jr., R. C. Stern, and C. R. Abramowsky. 1989. The pathology of fungal infection and colonization in patients with cystic fibrosis. Hum. Pathol. 20:977-986. [PubMed] [Google Scholar]

22. Reference deleted.

23. Bijman, J., and P. M. Quinton. 1987. Lactate and bicarbonate uptake in the sweat duct of cystic fibrosis and normal subjects. Pediatr. Res. 21:79-82. [PubMed] [Google Scholar]

24. Birrer, P., N. G. McElvaney, A. Rudeberg, C. W. Sommer, S. Liechti-Gallati, R. Kraemer, R. Hubbard, and R. G. Crystal. 1994. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 150:207-213. [PubMed] [Google Scholar]

25. Bollinger, N., D. J. Hassett, B. H. Iglewski, J. W. Costerton, and T. R. McDermott. 2001. Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J. Bacteriol. 183:1990-1996. [PMC free article] [PubMed] [Google Scholar]

26. Bonfield, T. L., M. W. Konstan, and M. Berger. 1999. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J. Allergy Clin. Immunol. 104:72-78. [PubMed] [Google Scholar]

27. Boucher, J. C., H. Yu, M. H. Mudd, and V. Deretic. 1997. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65:3838-3846. [PMC free article] [PubMed] [Google Scholar]

28. Boucher, R. C., M. J. Stutts, M. R. Knowles, L. Cantley, and J. T. Gatzy. 1986. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J. Clin. Investig. 78:1245-1252. [PMC free article] [PubMed] [Google Scholar]

29. Boxerbaum, B. 1980. Isolation of rapidly growing mycobacteria in patients with cystic fibrosis. J. Pediatr. 96:689-691. [PubMed] [Google Scholar]

30. Braggion, C., L. M. Cappelletti, M. Cornacchia, L. Zanolla, and G. Mastella. 1995. Short-term effects of three chest physiotherapy regimens in patients hospitalized for pulmonary exacerbations of cystic fibrosis: a cross-over randomized study. Pediatr. Pulmonol. 19:16-22. [PubMed] [Google Scholar]

31. Bretscher, A. 1999. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol. 11:109-116. [PubMed] [Google Scholar]

32. Brett, M. M., A. T. Ghoneim, and J. M. Littlewood. 1986. Serum antibodies to Pseudomonas aeruginosa in cystic fibrosis. Arch. Dis. Child. 61:1114-1120. [PMC free article] [PubMed] [Google Scholar]

33. Brint, J. M., and D. E. Ohman. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177:7155-7163. [PMC free article] [PubMed] [Google Scholar]

34. Brogden, K. A., M. R. Ackermann, P. B. McCray, Jr., and K. M. Huttner. 1999. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect. Immun. 67:4256-4259. [PMC free article] [PubMed] [Google Scholar]

35. Brooun, A., S. Liu, and K. Lewis. 2000. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44:640-646. [PMC free article] [PubMed] [Google Scholar]

36. Bryan, L. E., H. M. Van Den Elzen, and J. T. Tseng. 1972. Transferable drug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1:22-29. [PMC free article] [PubMed] [Google Scholar]

37. Bryan, R., D. Kube, A. Perez, P. Davis, and A. Prince. 1998. Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am. J. Respir. Cell Mol. Biol. 19:269-277. [PubMed] [Google Scholar]

38. Burkhardt, J. E., J. N. Walterspiel, and U. B. Schaad. 1997. Quinolone arthropathy in animals versus children. Clin. Infect. Dis. 25:1196-1204. [PubMed] [Google Scholar]

39. Burnie, J. P., E. J. al-Wardi, P. Williamson, R. C. Matthews, K. Webb, and T. David. 1995. Defining potential targets for immunotherapy in Burkholderia cepacia infection. FEMS Immunol. Med. Microbiol. 10:157-164. [PubMed] [Google Scholar]

40. Burns, J. L., J. Emerson, J. R. Stapp, D. L. Yim, J. Krzewinski, L. Louden, B. W. Ramsey, and C. R. Clausen. 1998. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin. Infect. Dis. 27:158-163. [PubMed] [Google Scholar]

41. Burns, J. L., R. L. Gibson, S. McNamara, D. Yim, J. Emerson, M. Rosenfeld, P. Hiatt, K. McCoy, R. Castile, A. L. Smith, and B. W. Ramsey. 2001. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis. 183:444-452. [PubMed] [Google Scholar]

42. Burns, J. L., M. Jonas, E. Y. Chi, D. K. Clark, A. Berger, and A. Griffith. 1996. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect. Immun. 64:4054-4059. [PMC free article] [PubMed] [Google Scholar]

43. Burns, M. W. 1968. Precipitins to Klebsiella and other enterobacteria in the serum of patients with chronic respiratory disorders. Lancet i:383-385. [PubMed] [Google Scholar]

44. Burns, M. W., and J. R. May. 1968. Bacterial precipitins in serum of patients with cystic fibrosis. Lancet i:270-272. [PubMed] [Google Scholar]

45. Cabral, D. A., B. A. Loh, and D. P. Speert. 1987. Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr. Res. 22:429-431. [PubMed] [Google Scholar]

46. Cahill, P., M. W. Nason, Jr., C. Ambrose, T. Y. Yao, P. Thomas, and M. E. Egan. 2000. Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2. J. Biol. Chem. 275:16697-16701. [PubMed] [Google Scholar]

46a. Cambridge University Press. 1933. The geographical distribution of Salmonella typhi and Salmonella paratyphi A and B phage types during the period 1 January 1966 to 31 December 1969. J. Hyg. 71:59-84. [PMC free article] [PubMed] [Google Scholar]

47. Canessa, C. M., J. D. Horisberger, and B. C. Rossier. 1993. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467-470. [PubMed] [Google Scholar]

48. Chen, J. H., H. Schulman, and P. Gardner. 1989. A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis. Science 243:657-660. [PubMed] [Google Scholar]

49. Cheng, S. H., D. P. Rich, J. Marshall, R. J. Gregory, M. J. Welsh, and A. E. Smith. 1991. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027-1036. [PubMed] [Google Scholar]

50. Children's Hospital. 1999. Epidemiologic study of cystic fibrosis study center report: reporting period January 1, 1998 to December 31, 1998. Children's Hospital, Boston, Mass.

51. Choi, J. Y., D. Muallem, K. Kiselyov, M. G. Lee, P. J. Thomas, and S. Muallem. 2001. Aberrant CFTR-dependent HCO-3 transport in mutations associated with cystic fibrosis. Nature 410:94-97. [PMC free article] [PubMed] [Google Scholar]

52. Church, D. A., J. F. Kanga, R. J. Kuhn, T. T. Rubio, W. A. Spohn, J. C. Stevens, B. G. Painter, B. E. Thurberg, D. C. Haverstock, R. Y. Perroncel, and R. M. Echols for the Cystic Fibrosis Study Group. 1997. Sequential ciprofloxacin therapy in pediatric cystic fibrosis: comparative study vs. ceftazidime/tobramycin in the treatment of acute pulmonary exacerbations. Pediatr. Infect. Dis. J. 16:97-105; discussion 123-126. [PubMed] [Google Scholar]

53. Clarke, L. L., M. C. Harline, L. R. Gawenis, N. M. Walker, J. T. Turner, and G. A. Weisman. 2000. Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium. Am. J. Physiol. 279:G132-G138. [PubMed] [Google Scholar]

54. Cockrill, B. A., and C. A. Hales. 1999. Allergic bronchopulmonary aspergillosis. Annu. Rev. Med. 50:303-316. [PubMed] [Google Scholar]

55. Colin, A. A., S. M. Sawyer, J. E. Mickle, R. D. Oates, A. Milunsky, and J. A. Amos. 1996. Pulmonary function and clinical observations in men with congenital bilateral absence of the vas deferens. Chest 110:440-445. [PubMed] [Google Scholar]

56. Colin, A. A., and M. E. Wohl. 1994. Cystic fibrosis. Pediatr. Rev. 15:192-200. [PubMed] [Google Scholar]

57. Comolli, J. C., L. L. Waite, K. E. Mostov, and J. N. Engel. 1999. Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect. Immun. 67:3207-3214. [PMC free article] [PubMed] [Google Scholar]

58. Costes, B., E. Girodon, N. Ghanem, E. Flori, A. Jardin, J. C. Soufir, and M. Goossens. 1995. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur. J. Hum. Genet. 3:285-293. [PubMed] [Google Scholar]

59. Cullen, A. R., C. L. Cannon, E. M. Mark, and A. A. Colin. 2000. Mycobacterium abscessus infection in cystc fibrosis. Colonization of infection? Am. J. Respir. Crit. Care Med. 161:641-645. [PubMed] [Google Scholar]

60. Cuthbert, A. W., J. Halstead, R. Ratcliff, W. H. Colledge, and M. J. Evans. 1995. The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J. Physiol. 482:449-454. [PMC free article] [PubMed] [Google Scholar]

61. Cystic Fibrosis Foundation. 1999. Patient registry 1998 annual data report, September 1999. Cystic Fibrosis Foundation, Bethesda, Md.

62. Dacheux, D., B. Toussaint, M. Richard, G. Brochier, J. Croize, and I. Attree. 2000. Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect. Immun. 68:2916-2924. [PMC free article] [PubMed] [Google Scholar]

63. Dahl, M., A. Tybjaerg-Hansen, H. H. Wittrup, P. Lange, and B. G. Nordestgaard. 1998. Cystic fibrosis Delta F508 heterozygotes, smoking, and reproduction: studies of 9141 individuals from a general population sample. Genomics 50:89-96. [PubMed] [Google Scholar]

64. Darzins, A., and A. M. Chakrabarty. 1984. Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J. Bacteriol. 159:9-18. [PMC free article] [PubMed] [Google Scholar]

65. Datta, N. 1969. Drug resistance and R factors in the bowel bacteria of London patients before and after admission to hospital. Br. Med. J. 2:407-411. [PMC free article] [PubMed] [Google Scholar]

66. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298. [PubMed] [Google Scholar]

67. Reference deleted.

68. Davis, P. B., M. Drumm, and M. W. Konstan. 1996. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154:1229-1256. [PubMed] [Google Scholar]

69. de Bentzmann, S., P. Roger, F. Dupuit, O. Bajolet-Laudinat, C. Fuchey, M. C. Plotkowski, and E. Puchelle. 1996. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect. Immun. 64:1582-1588. [PMC free article] [PubMed] [Google Scholar]

70. Demko, C. A., P. J. Byard, and P. B. Davis. 1995. Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. J. Clin. Epidemiol. 48:1041-1049. [PubMed] [Google Scholar]

71. Denning, G. M., L. S. Ostedgaard, S. H. Cheng, A. E. Smith, and M. J. Welsh. 1992. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J. Clin. Investig. 89:339-349. [PMC free article] [PubMed] [Google Scholar]

72. Deretic, V., and W. M. Konyecsni. 1989. Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J. Bacteriol. 171:3680-3688. [PMC free article] [PubMed] [Google Scholar]

73. Deretic, V., J. H. Leveau, C. D. Mohr, and N. S. Hibler. 1992. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol. Microbiol. 6:2761-2767. [PubMed] [Google Scholar]

74. DeVries, C. A., and D. E. Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J. Bacteriol. 176:6677-6687. [PMC free article] [PubMed] [Google Scholar]

75. DiMango, E., A. J. Ratner, R. Bryan, S. Tabibi, and A. Prince. 1998. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Investig. 101:2598-2605. [PMC free article] [PubMed] [Google Scholar]

76. DiMango, E., H. J. Zar, R. Bryan, and A. Prince. 1995. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J. Clin. Investig. 96:2204-2210. [PMC free article] [PubMed] [Google Scholar]

77. diSant'Agnese, P. A., R. C. Darling, G. A. Perera, and E. Shea. 1953. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas: clinical significance and relationship to the disease. Pediatrics 12:549-563. [PubMed] [Google Scholar]

78. diSant'Agnese, P., and D. Anderson. 1946. Celiac syndrome. IV. Chemotherapy in infection of the respiratory tract associated with cystic fibrosis of the pancreas. Am. J. Dis. Child. 72:17-61. [PubMed] [Google Scholar]

79. Doggett, R. G., G. M. Harrison, R. N. Stillwell, and E. S. Wallis. 1966. An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J. Pediatr. 68:215-221. [Google Scholar]

80. Doring, G., S. P. Conway, H. G. Heijerman, M. E. Hodson, N. Hoiby, A. Smyth, and D. J. Touw. 2000. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Respir. J. 16:749-767. [PubMed] [Google Scholar]

81. Doring, G., and N. Hoiby. 1983. Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis. Infect. Immun. 42:197-201. [PMC free article] [PubMed] [Google Scholar]

82. Doring, G., S. Jansen, H. Noll, H. Grupp, F. Frank, K. Botzenhart, K. Magdorf, and U. Wahn. 1996. Distribution and transmission of Pseudomonas aeruginosa and Burkholderia cepacia in a hospital ward. Pediatr. Pulmonol. 21:90-100. [PubMed] [Google Scholar]

83. Dork, T., U. Wulbrand, T. Richter, T. Neumann, H. Wolfes, B. Wulf, G. Maass, and B. Tummler. 1991. Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum. Genet. 87:441-446. [PubMed] [Google Scholar]

84. Egan, M., T. Flotte, S. Afione, R. Solow, P. L. Zeitlin, B. J. Carter, and W. B. Guggino. 1992. Defective regulation of outwardly rectifying Cl− channels by protein kinase A corrected by insertion of CFTR. Nature 358:581-584. [PubMed] [Google Scholar]

85. Eigen, H., B. J. Rosenstein, S. FitzSimmons, and D. V. Schidlow. 1995. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J. Pediatr. 126:515-523. [PubMed] [Google Scholar]

86. Engelhardt, J. F., S. S. Smith, E. Allen, J. R. Yankaskas, D. C. Dawson, and J. M. Wilson. 1994. Coupled secretion of chloride and mucus in skin of Xenopus laevis: possible role for CFTR. Am. J. Physiol. 267:C491-C500. [PubMed] [Google Scholar]

87. Engelhardt, J. F., J. R. Yankaskas, S. A. Ernst, Y. Yang, C. R. Marino, R. C. Boucher, J. A. Cohn, and J. M. Wilson. 1992. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat. Genet. 2:240-248. [PubMed] [Google Scholar]

88. Estivill, X., M. Farrall, P. J. Scambler, G. M. Bell, K. M. Hawley, N. J. Lench, G. P. Bates, H. C. Kruyer, P. A. Frederick, P. Stanier, et al. 1987. A candidate for the cystic fibrosis locus isolated by selection for methylation-free islands. Nature 326:840-845. [PubMed] [Google Scholar]

89. Falk, M., M. Kelstrup, J. B. Andersen, T. Kinoshita, P. Falk, S. Stovring, and I. Gothgen. 1984. Improving the ketchup bottle method with positive expiratory pressure, PEP, in cystic fibrosis. Eur. J. Respir. Dis. 65:423-432. [PubMed] [Google Scholar]

90. Farrell, P. M., G. Shen, M. Splaingard, C. E. Colby, A. Laxova, M. R. Kosorok, M. J. Rock, and E. H. Mischler. 1997. Acquisition of Pseudomonas aeruginosa in children with cystic fibrosis. Pediatrics 100:E2. [PubMed] [Google Scholar]

91. Finck-Barbancon, V., J. Goranson, L. Zhu, T. Sawa, J. P. Wiener-Kronish, S. M. Fleiszig, C. Wu, L. Mende-Mueller, and D. W. Frank. 1997. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 25:547-557. [PubMed] [Google Scholar]

92. Fisher, M. C., J. J. LiPuma, S. E. Dasen, G. C. Caputo, J. E. Mortensen, K. L. McGowan, and T. L. Stull. 1993. Source of Pseudomonas cepacia: ribotyping of isolates from patients and from the environment. J. Pediatr. 123:745-747. [PubMed] [Google Scholar]

93. FitzSimmons, S. C. 1993. The changing epidemiology of cystic fibrosis. J. Pediatr. 122:1-9. [PubMed] [Google Scholar]

94. Frederiksen, B., C. Koch, and N. Hoiby. 1997. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 23:330-335. [PubMed] [Google Scholar]

95. Frederiksen, B., C. Koch, and N. Hoiby. 1999. Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974-1995). Pediatr. Pulmonol. 28:159-166. [PubMed] [Google Scholar]

96. Freedman, S. D., M. H. Katz, E. M. Parker, M. Laposata, M. Y. Urman, and J. G. Alvarez. 1999. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice. Proc. Natl. Acad. Sci. USA 96:13995-4000. [PMC free article] [PubMed] [Google Scholar]

97. Freedman, S. D., J. C. Shea, P. G. Blanco, and J. G. Alvarez. 2000. Fatty acids in cystic fibrosis. Curr. Opin. Pulm. Med. 6:530-532. [PubMed] [Google Scholar]

98. Frithz-Lindsten, E., A. Holmstrom, L. Jacobsson, M. Soltani, J. Olsson, R. Rosqvist, and A. Forsberg. 1998. Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Mol. Microbiol. 29:1155-1165. [PubMed] [Google Scholar]

99. Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. 236:F1-F8. [PubMed] [Google Scholar]

100. Fuchs, H. J., D. S. Borowitz, D. H. Christiansen, E. M. Morris, M. L. Nash, B. W. Ramsey, B. J. Rosenstein, A. L. Smith, and M. E. Wohl for the Pulmozyme Study Group. 1994. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331:637-642. [PubMed] [Google Scholar]

101. Fyfe, J. A., and J. R. Govan. 1980. Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J. Gen. Microbiol. 119:443-450. [PubMed] [Google Scholar]

102. Gabriel, S. E., K. N. Brigman, B. H. Koller, R. C. Boucher, and M. J. Stutts. 1994. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266:107-109. [PubMed] [Google Scholar]

103. Gabriel, S. E., L. L. Clarke, R. C. Boucher, and M. J. Stutts. 1993. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363:263-268. [PubMed] [Google Scholar]

104. Gadsby, D. C., and A. C. Nairn. 1999. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79:S77-S107. [PubMed] [Google Scholar]

105. Geddes, D. M. 1988. Antimicrobial therapy against Staphylococcus aureus, Pseudomonas aeruginosa, and Pseudomonas cepacia. Chest 94:140S-145S. [PubMed] [Google Scholar]

106. Gefter, W. B. 1992. The spectrum of pulmonary aspergillosis. J. Thorac. Imaging 7:56-74. [PubMed] [Google Scholar]

107. Gilbert, A., M. Jadot, E. Leontieva, S. Wattiaux-De Coninck, and R. Wattiaux. 1998. Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp. Cell Res. 242:144-152. (Erratum, 246:538, 1999.) [PubMed] [Google Scholar]

108. Gladman, G., P. J. Connor, R. F. Williams, and T. J. David. 1992. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch. Dis. Child. 67:192-195. [PMC free article] [PubMed] [Google Scholar]

109. Glazebrook, J. S., R. S. Campbell, G. W. Hutchinson, and N. D. Stallman. 1978. Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust. J. Exp. Biol. Med. Sci. 56:147-156. [PubMed] [Google Scholar]

110. Goldman, M. J., G. M. Anderson, E. D. Stolzenberg, U. P. Kari, M. Zasloff, and J. M. Wilson. 1997. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553-560. [PubMed] [Google Scholar]

111. Govan, J. R., C. Doherty, and S. Glass. 1987. Rational parameters for antibiotic therapy in patients with cystic fibrosis. Infection 15:300-307. [PubMed] [Google Scholar]

112. Govan, J. R., and J. W. Nelson. 1992. Microbiology of lung infection in cystic fibrosis. Br. Med. Bull. 48:912-930. [PubMed] [Google Scholar]

113. Grassme, H., S. Kirschnek, J. Riethmueller, A. Riehle, G. von Kurthy, F. Lang, M. Weller, and E. Gulbins. 2000. CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290:527-530. [PubMed] [Google Scholar]

114. Gray, K. M., L. Passador, B. H. Iglewski, and E. P. Greenberg. 1994. Interchangeability and specificity of components from the quorum- sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J. Bacteriol. 176:3076-3080. [PMC free article] [PubMed] [Google Scholar]

115. Green, S. K., M. N. Schroth, J. J. Cho, S. K. Kominos, and V. B. Vitanzajack. 1974. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl. Microbiol. 28:987-991. [PMC free article] [PubMed] [Google Scholar]

116. Greger, R. 1996. The amiloride-inhibitable Na+ conductance of rat colonic crypt cells is suppressed by forskolin. Pflugers Arch. 431:984-986. [PubMed] [Google Scholar]

117. Grygorczyk, R., and J. W. Hanrahan. 1997. CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am. J. Physiol. 272:C1058-C1066. [PubMed] [Google Scholar]

118. Gupta, S. K., R. S. Berk, S. Masinick, and L. D. Hazlett. 1994. Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect. Immun. 62:4572-4579. [PMC free article] [PubMed] [Google Scholar]

119. Hall, R. A., L. S. Ostedgaard, R. T. Premont, J. T. Blitzer, N. Rahman, M. J. Welsh, and R. J. Lefkowitz. 1998. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95:8496-8501. [PMC free article] [PubMed] [Google Scholar]

120. Hancock, R. E., L. M. Mutharia, L. Chan, R. P. Darveau, D. P. Speert, and G. B. Pier. 1983. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypeable strains deficient in lipopolysaccharide O side chains. Infect. Immun. 42:170-177. [PMC free article] [PubMed] [Google Scholar]

121. Hazes, B., P. A. Sastry, K. Hayakawa, R. J. Read, and R. T. Irvin. 2000. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol. 299:1005-1017. [PubMed] [Google Scholar]

122. Heilesen, A. M., H. Permin, C. Koch, and N. Hoiby. 1983. Treatment of chronic Pseudomonas aeruginosa infection in cystic fibrosis patients with ceftazidime and tobramycin. Scand. J. Infect. Dis. 15:271-276. [PubMed] [Google Scholar]

123. Hjelte, L., B. Petrini, G. Kallenius, and B. Strandvik. 1990. Prospective study of mycobacterial infections in patients with cystic fibrosis. Thorax 45:397-400. [PMC free article] [PubMed] [Google Scholar]

124. Hodson, M. E., C. M. Roberts, R. J. Butland, M. J. Smith, and J. C. Batten. 1987. Oral ciprofloxacin compared with conventional intravenous treatment for Pseudomonas aeruginosa infection in adults with cystic fibrosis. Lancet i:235-237. [PubMed] [Google Scholar]

125. Hogan, D. L., D. L. Crombie, J. I. Isenberg, P. Svendsen, O. B. Schaffalitzky de Muckadell, and M. A. Ainsworth. 1997. Acid-stimulated duodenal bicarbonate secretion involves a CFTR-mediated transport pathway in mice. Gastroenterology 113:533-541. [PubMed] [Google Scholar]

126. Hogan, D. L., D. L. Crombie, J. I. Isenberg, P. Svendsen, O. B. Schaffalitzky de Muckadell, and M. A. Ainsworth. 1997. CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3− secretion. Am. J. Physiol. 272:G872-G878. [PubMed] [Google Scholar]

127. Hogardt, M., K. Trebesius, A. M. Geiger, M. Hornef, J. Rosenecker, and J. Heesemann. 2000. Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J. Clin. Microbiol. 38:818-825. [PMC free article] [PubMed] [Google Scholar]

128. Hopken, U. E., B. Lu, N. P. Gerard, and C. Gerard. 1996. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383:86-89. [PubMed] [Google Scholar]

129. Huang, N. N., D. V. Schidlow, T. H. Szatrowski, J. Palmer, L. R. Laraya-Cuasay, W. Yeung, K. Hardy, L. Quitell, and S. Fiel. 1987. Clinical features, survival rate and prognostic factors in young adults with cystic fibrosis. Am. J. Med. 82:871-879. [PubMed] [Google Scholar]

130. Hudson, V. L., C. L. Wielinski, and W. E. Regelmann. 1993. Prognostic implications of initial oropharyngeal bacterial flora in patients with cystic fibrosis diagnosed before the age of two years. J. Pediatr. 122:854-860. [PubMed] [Google Scholar]

131. Hundrieser, J., S. Bremer, F. Peinemann, M. Stuhrmann, N. Hoffknecht, B. Wulf, J. Schmidtke, J. Reiss, G. Maass, and B. Tummler. 1990. Frequency of the F508 deletion in the CFTR gene in Turkish cystic fibrosis patients. Hum. Genet. 85:409-410. [PubMed] [Google Scholar]

132. Hwang, T. C., L. Lu, P. L. Zeitlin, D. C. Gruenert, R. Huganir, and W. B. Guggino. 1989. Cl− channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science 244:1351-1353. [PubMed] [Google Scholar]

133. Illek, B., H. Fischer, and T. E. Machen. 1998. Genetic disorders of membrane transport. II. Regulation of CFTR by small molecules including HCO3. Am. J. Physiol. 275:G1221-G1226. [PubMed] [Google Scholar]

134. Illek, B., J. R. Yankaskas, and T. E. Machen. 1997. cAMP and genistein stimulate HCO3-conductance through CFTR in human airway epithelia. Am. J. Physiol. 272:L752-L761. [PubMed] [Google Scholar]

135. Ismailov, II, M. S. Awayda, B. Jovov, B. K. Berdiev, C. M. Fuller, J. R. Dedman, M. Kaetzel, and D. J. Benos. 1996. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 271:4725-4732. [PubMed] [Google Scholar]

136. Ivanoff, B., M. M. Levine, and P. H. Lambert. 1994. Vaccination against typhoid fever: present status. Bull. World Health Organ. 72:957-971. [PMC free article] [PubMed] [Google Scholar]

137. Iyobe, S., K. Hasuda, H. Sagai, and S. Mitsuhashi. 1975. Drug resistance and R factors in P. aeruginosa, pp. 321-327. In S. Mitsuhashi and J. Hashimoto (ed.), Microbial drug resistance. University Park Press, Baltimore, Md.

138. Jensen, T., S. S. Pedersen, S. Garne, C. Heilmann, N. Hoiby, and C. Koch. 1987. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J. Antimicrob. Chemother. 19:831-838. [PubMed] [Google Scholar]

139. Jorde, L. B., and G. M. Lathrop. 1988. A test of the heterozygote-advantage hypothesis in cystic fibrosis carriers. Am. J. Hum. Genet. 42:808-815. [PMC free article] [PubMed] [Google Scholar]

140. Jovov, B., I. I. Ismailov, and D. J. Benos. 1995. Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J. Biol. Chem. 270:1521-1528. [PubMed] [Google Scholar]

141. Jovov, B., I. I. Ismailov, B. K. Berdiev, C. M. Fuller, E. J. Sorscher, J. R. Dedman, M. A. Kaetzel, and D. J. Benos. 1995. Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J. Biol. Chem. 270:29194-29200. [PubMed] [Google Scholar]

142. Kalin, N., A. Claass, M. Sommer, E. Puchelle, and B. Tummler. 1999. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Investig. 103:1379-1389. [PMC free article] [PubMed] [Google Scholar]

143. Kapur, V., T. S. Whittam, and J. M. Musser. 1994. Is Mycobacterium tuberculosis 15,000 years old? J. Infect. Dis. 170:1348-1349. [PubMed] [Google Scholar]

144. Kartner, N., J. W. Hanrahan, T. J. Jensen, A. L. Naismith, S. Z. Sun, C. A. Ackerley, E. F. Reyes, L. C. Tsui, J. M. Rommens, C. E. Bear, et al. 1991. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell. 64:681-691. [PubMed] [Google Scholar]

145. Keppler, D., I. Leier, and G. Jedlitschky. 1997. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol. Chem. 378:787-791. [PubMed] [Google Scholar]

146. Kerem, B., J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, A. Chakravarti, M. Buchwald, and L. C. Tsui. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073-1080. [PubMed] [Google Scholar]

147. Kerem, E., N. Rave-Harel, A. Augarten, I. Madgar, M. Nissim-Rafinia, Y. Yahav, R. Goshen, L. Bentur, J. Rivlin, M. Aviram, A. Genem, O. Chiba-Falek, M. R. Kraemer, A. Simon, D. Branski, and B. Kerem. 1997. A cystic fibrosis transmembrane conductance regulator splice variant with partial penetrance associated with variable cystic fibrosis presentations. Am. J. Respir. Crit. Care Med. 155:1914-1920. [PubMed] [Google Scholar]

148. Khan, T. Z., J. S. Wagener, T. Bost, J. Martinez, F. J. Accurso, and D. W. Riches. 1995. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151:1075-1082. [PubMed] [Google Scholar]

149. Kilby, J. M., P. H. Gilligan, J. R. Yankaskas, W. E. Highsmith, Jr., L. J. Edwards, and M. R. Knowles. 1992. Nontuberculous mycobacteria in adult patients with cystic fibrosis. Chest. 102:70-75. [PubMed] [Google Scholar]

150. Kirchner, K. K., J. S. Wagener, T. Z. Khan, S. C. Copenhaver, and F. J. Accurso. 1996. Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 154:1426-1429. [PubMed] [Google Scholar]

151. Kitamoto, O., N. Kasai, K. Fukaya, and A. Kawashima. 1956. Drug sensitivity of the Shigella strains isolated in 1955. J. Jpn. Assoc. Infect. Dis. 30:403. [Google Scholar]

152. Knowles, M. R., N. L. Church, W. E. Waltner, J. R. Yankaskas, P. Gilligan, M. King, L. J. Edwards, R. W. Helms, and R. C. Boucher. 1990. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N. Engl. J. Med. 322:1189-1194. [PubMed] [Google Scholar]

153. Knowles, M. R., L. L. Clarke, and R. C. Boucher. 1991. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 325:533-538. [PubMed] [Google Scholar]

154. Knowles, M. R., A. M. Paradiso, and R. C. Boucher. 1995. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 6:445-455. [PubMed] [Google Scholar]

155. Knowlton, R. G., O. Cohen-Haguenauer, N. Van Cong, J. Frezal, V. A. Brown, D. Barker, J. C. Braman, J. W. Schumm, L. C. Tsui, M. Buchwald, et al. 1985. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380-382. [PubMed] [Google Scholar]

156. Kobayashi, F., M. Yamaguchi, and S. Mitsuhashi. 1972. Drug resistance to aminoglycosidic antibiotics in Pseudomonas aeruginosa and its lability. Jpn. J. Microbiol. 16:425-431. [PubMed] [Google Scholar]

157. Kobayashi, K., M. R. Knowles, R. C. Boucher, W. E. O'Brien, and A. L. Beaudet. 1990. Benign missense variations in the cystic fibrosis gene. Am. J. Hum. Genet. 47:611-615. [PMC free article] [PubMed] [Google Scholar]

158. Koch, C., and N. Hoiby. 2000. Diagnosis and treatment of cystic fibrosis. Respiration 67:239-247. [PubMed] [Google Scholar]

159. Konstan, M. W. 1998. Therapies aimed at airway inflammation in cystic fibrosis. Clin. Chest Med. 19:505-513, vi. [PubMed] [Google Scholar]

160. Konstan, M. W., P. J. Byard, C. L. Hoppel, and P. B. Davis. 1995. Effect of high-dose ibuprofen in patients with cystic fibrosis. N. Engl. J. Med. 332:848-854. [PubMed] [Google Scholar]

161. Konstan, M. W., K. A. Hilliard, T. M. Norvell, and M. Berger. 1994. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am. J. Respir. Crit. Care Med. 150:448-454. (Erratum, 151:260, 1995) [PubMed] [Google Scholar]

162. Konstan, M. W., R. C. Stern, and C. F. Doershuk. 1994. Efficacy of the Flutter device for airway mucus clearance in patients with cystic fibrosis. J. Pediatr. 124:689-693. [PubMed] [Google Scholar]

163. Konyecsni, W. M., and V. Deretic. 1990. DNA sequence and expression analysis of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. J. Bacteriol. 172:2511-2520. [PMC free article] [PubMed] [Google Scholar]

164. Krieg, D. P., R. J. Helmke, V. F. German, and J. A. Mangos. 1988. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages. Infect. Immun. 56:3173-3179. [PMC free article] [PubMed] [Google Scholar]

165. Kube, D., L. Adams, A. Perez, and P. B. Davis. 2001. Terminal sialylation is altered in airway cells with impaired CFTR-mediated chloride transport. Am. J. Physiol. 280:L482-L492. [PubMed] [Google Scholar]

166. Kunzelmann, K., G. L. Kiser, R. Schreiber, and J. R. Riordan. 1997. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 400:341-344. [PubMed] [Google Scholar]

167. Kuschert, G. S., F. Coulin, C. A. Power, A. E. Proudfoot, R. E. Hubbard, A. J. Hoogewerf, and T. N. Wells. 1999. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38:12959-12968. [PubMed] [Google Scholar]

168. Lam, J., R. Chan, K. Lam, and J. W. Costerton. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28:546-556. [PMC free article] [PubMed] [Google Scholar]

169. Landsteiner, K. 1905. Darmverschluss durch eingedicktes Meconium; pankreatitis. Zentralbl. Allg. Pathol. Ser. U, 16:903. [Google Scholar]

170. Lang, B. J., S. D. Aaron, W. Ferris, P. C. Hebert, and N. E. Macdonald. 2000. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with multiresistant strains of Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 162:2241-2245. [PubMed] [Google Scholar]

171. Learn, D. B., E. P. Brestel, and S. Seetharama. 1987. Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infect. Immun. 55:1813-1818. [PMC free article] [PubMed] [Google Scholar]

172. Lee, K. K., P. Doig, R. T. Irvin, W. Paranchych, and R. S. Hodges. 1989. Mapping the surface regions of Pseudomonas aeruginosa PAK pilin: the importance of the C-terminal region for adherence to human buccal epithelial cells. Mol. Microbiol. 3:1493-1499. [PubMed] [Google Scholar]

173. LeVine, A. M., K. E. Kurak, M. D. Bruno, J. M. Stark, J. A. Whitsett, and T. R. Korfhagen. 1998. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 19:700-708. [PubMed] [Google Scholar]

174. Lewin, L. O., P. J. Byard, and P. B. Davis. 1990. Effect of Pseudomonas cepacia colonization on survival and pulmonary function of cystic fibrosis patients. J. Clin. Epidemiol. 43:125-131. [PubMed] [Google Scholar]

175. Li, M., J. D. McCann, C. M. Liedtke, A. C. Nairn, P. Greengard, and M. J. Welsh. 1988. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358-360. [PubMed] [Google Scholar]

176. Linsdell, P., and J. W. Hanrahan. 1998. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 111:601-614. [PMC free article] [PubMed] [Google Scholar]

177. Linsdell, P., J. A. Tabcharani, J. M. Rommens, Y. X. Hou, X. B. Chang, L. C. Tsui, J. R. Riordan, and J. W. Hanrahan. 1997. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 110:355-364. [PMC free article] [PubMed] [Google Scholar]

178. Liu, C. E., P. Q. Liu, and G. F. L. Ames. 1997. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J. Biol. Chem. 272:21883-21891. [PubMed] [Google Scholar]

179. Ma, D., D. N. Cook, J. E. Hearst, and H. Nikaido. 1994. Efflux pumps and drug resistance in Gram-negative bacteria. Trends Microbiol. 2:489-493. [PubMed] [Google Scholar]

180. Ma, J., J. Zhao, M. L. Drumm, J. Xie, and P. B. Davis. 1997. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 272:28133-28141. [PubMed] [Google Scholar]

181. Ma, S., U. Selvaraj, D. E. Ohman, R. Quarless, D. J. Hassett, and D. J. Wozniak. 1998. Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 180:956-968. [PMC free article] [PubMed] [Google Scholar]

182. Ma, S., D. J. Wozniak, and D. E. Ohman. 1997. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J. Biol. Chem. 272:17952-17960. [PubMed] [Google Scholar]

183. Mahenthiralingam, E., M. E. Campbell, and D. P. Speert. 1994. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 62:596-605. [PMC free article] [PubMed] [Google Scholar]

184. Manavalan, P., A. E. Smith, and J. M. McPherson. 1993. Sequence and structural homology among membrane-associated domains of CFTR and certain transporter proteins. J. Protein Chem. 12:279-290. [PubMed] [Google Scholar]

185. Mariencheck, W. I., J. Savov, Q. Dong, M. J. Tino, and J. R. Wright. 1999. Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. Am. J. Physiol. 277:L777-L786. [PubMed] [Google Scholar]

186. Martin, D. W., M. J. Schurr, H. Yu, and V. Deretic. 1994. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J. Bacteriol. 176:6688-6696. [PMC free article] [PubMed] [Google Scholar]

187. Masuda, N., E. Sakagawa, and S. Ohya. 1995. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:645-649. [PMC free article] [PubMed] [Google Scholar]

188. Mathee, K., O. Ciofu, C. Sternberg, P. W. Lindum, J. I. Campbell, P. Jensen, A. H. Johnsen, M. Givskov, D. E. Ohman, S. Molin, N. Hoiby, and A. Kharazmi. 1999. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349-1357. [PubMed] [Google Scholar]

189. Mathee, K., C. J. McPherson, and D. E. Ohman. 1997. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 179:3711-3720. [PMC free article] [PubMed] [Google Scholar]

190. Matsui, H., B. R. Grubb, R. Tarran, S. H. Randell, J. T. Gatzy, C. W. Davis, and R. C. Boucher. 1998. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005-1015. [PubMed] [Google Scholar]

191. McCaffery, K., R. E. Olver, M. Franklin, and S. Mukhopadhyay. 1999. Systematic review of antistaphylococcal antibiotic therapy in cystic fibrosis. Thorax 54:380-383. [PMC free article] [PubMed] [Google Scholar]

192. McIntosh, R. 1954. Cystic fibrosis of the pancreas in patients over 10 years of age. Acta Paediatr. 43:469. [PubMed] [Google Scholar]

193. McLaughlin, F. J., W. J. Matthews, Jr., D. J. Strieder, B. Sullivan, A. Taneja, P. Murphy, and D. A. Goldmann. 1983. Clinical and bacteriological responses to three antibiotic regimens for acute exacerbations of cystic fibrosis: ticarcillin-tobramycin, azlocillin-tobramycin, and azlocillin-placebo. J. Infect. Dis. 147:559-567. [PubMed] [Google Scholar]

194. Meluleni, G. J., M. Grout, D. J. Evans, and G. B. Pier. 1995. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J. Immunol. 155:2029-2038. [PubMed] [Google Scholar]

195. Mennie, M., A. Gilfillan, D. J. Brock, and W. A. Liston. 1995. Heterozygotes for the delta F508 cystic fibrosis allele are not protected against bronchial asthma. Nat. Med. 1:978-979. [PubMed] [Google Scholar]

196. Meshulam, T., N. Obedeanu, D. Merzbach, and J. D. Sobel. 1984. Phagocytosis of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Clin. Immunol. Immunopathol. 32:151-165. [PubMed] [Google Scholar]

197. Michalsen, H., and T. Bergan. 1981. Azlocillin with and without an aminoglycoside against respiratory tract infections in children with cystic fibrosis. Scand. J. Infect. Dis. Suppl. 29:92-97. [PubMed] [Google Scholar]

198. Morrison, W. D., R. V. Miller, and G. S. Sayler. 1978. Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl. Environ. Microbiol. 36:724-730. [PMC free article] [PubMed] [Google Scholar]

199. Mortensen, J., M. Falk, S. Groth, and C. Jensen. 1991. The effects of postural drainage and positive expiratory pressure physiotherapy on tracheobronchial clearance in cystic fibrosis. Chest 100:1350-1357. [PubMed] [Google Scholar]

200. Mulherin, D., M. J. Coffey, D. O. Halloran, M. T. Keogan, and M. X. FitzGerald. 1990. Skin reactivity to atypical mycobacteria in cystic fibrosis. Respir. Med. 84:273-276. [PubMed] [Google Scholar]

201. Nakae, T. 1997. Multiantibiotic resistance caused by active drug extrusion in Pseudomonas aeruginosa and other gram-negative bacteria. Microbiologia 13:273-284. [PubMed] [Google Scholar]

202. Naren, A. P., A. Di, E. Cormet-Boyaka, P. N. Boyaka, J. R. McGhee, W. Zhou, K. Akagawa, T. Fujiwara, U. Thome, J. F. Engelhardt, D. J. Nelson, and K. L. Kirk. 2000. Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(−) currents. J. Clin. Investig. 105:377-386. [PMC free article] [PubMed] [Google Scholar]

203. Naren, A. P., D. J. Nelson, W. Xie, B. Jovov, J. Pevsner, M. K. Bennett, D. J. Benos, M. W. Quick, and K. L. Kirk. 1997. Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Nature 390:302-305. [PubMed] [Google Scholar]

204. Nelson, P. V., W. F. Carey, and C. P. Morris. 1991. Identification of a cystic fibrosis mutation: deletion of isoleucine506. Hum. Genet. 86:391-393. [PubMed] [Google Scholar]

205. Neville, D. C., C. R. Rozanas, B. M. Tulk, R. R. Townsend, and A. S. Verkman. 1998. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Biochemistry 37:2401-2409. [PubMed] [Google Scholar]

206. Nikaido, K., P. Q. Liu, and G. F. Ames. 1997. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity. J. Biol. Chem. 272:27745-27752. [PubMed] [Google Scholar]

207. Nivens, D. E., D. E. Ohman, J. Williams, and M. J. Franklin. 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol. 183:1047-57. [PMC free article] [PubMed] [Google Scholar]

208. Reference deleted.

209. Norris, R. F., and R. M. Tyson. 1946. The pathogenesis of polycystic pancreas: reconstruction of cystic elements in one case. Am. J. Pathol. 23:485-499. [PMC free article] [PubMed] [Google Scholar]

210. Ochiai, K., T. Yamanaka, K. Kimura, and O. Sawada. 1959. Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. Nippon Iji Shimpo 1861:34. [Google Scholar]

211. Ochsner, U. A., and J. Reiser. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:6424-6428. [PMC free article] [PubMed] [Google Scholar]

212. Ohman, D. E., and A. M. Chakrabarty. 1981. Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect. Immun. 33:142-148. [PMC free article] [PubMed] [Google Scholar]

213. Olexy, V. M., D. K. Mucha, T. J. Bird, H. G. Grieble, and S. K. Farrand. 1982. An R plasmid of Serratia marcescens transferable to Pseudomonas aeruginosa. Chemotherapy 28:6-17. [PubMed] [Google Scholar]

214. Olsen, R. H., and J. Hansen. 1976. Evolution and utility of a Pseudomonas aeruginosa drug resistance factor. J. Bacteriol. 125:837-844. [PMC free article] [PubMed] [Google Scholar]

215. Parad, R. B., C. J. Gerard, D. Zurakowski, D. P. Nichols, and G. B. Pier. 1999. Pulmonary outcome in cystic fibrosis is influenced primarily by mucoid Pseudomonas aeruginosa infection and immune status and only modestly by genotype. Infect. Immun. 67:4744-4750. [PMC free article] [PubMed] [Google Scholar]

216. Park, P. W., G. B. Pier, M. T. Hinkes, and M. Bernfield. 2001. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411:98-102. [PubMed] [Google Scholar]

217. Park, P. W., G. B. Pier, M. J. Preston, O. Goldberger, M. L. Fitzgerald, and M. Bernfield. 2000. Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J. Biol. Chem. 275:3057-3064. [PubMed] [Google Scholar]

218. Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127-1130. [PubMed] [Google Scholar]

219. Pasyk, E. A., X. K. Morin, P. Zeman, E. Garami, K. Galley, L. J. Huan, Y. Wang, and C. E. Bear. 1998. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. J. Biol. Chem. 273:31759-31764. [PubMed] [Google Scholar]

220. Pearson, J. P., K. M. Gray, L. Passador, K. D. Tucker, A. Eberhard, B. H. Iglewski, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197-201. [PMC free article] [PubMed] [Google Scholar]

221. Pearson, J. P., L. Passador, B. H. Iglewski, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:1490-1494. [PMC free article] [PubMed] [Google Scholar]

222. Pedersen, S. S., N. Hoiby, F. Espersen, and C. Koch. 1992. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6-13. [PMC free article] [PubMed] [Google Scholar]

223. Pedersen, S. S., T. Jensen, T. Pressler, N. Hoiby, and K. Rosendal. 1986. Does centralized treatment of cystic fibrosis increase the risk of Pseudomonas aeruginosa infection? Acta Paediatr. Scand. 75:840-845. [PubMed] [Google Scholar]

224. Pedersen, S. S., A. Kharazmi, F. Espersen, and N. Hoiby. 1990.Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect. Immun. 58:3363-3368. [PMC free article] [PubMed] [Google Scholar]

225. Pedersen, S. S., C. Koch, N. Hoiby, and K. Rosendal. 1986. An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J. Antimicrob. Chemother. 17:505-516. [PubMed] [Google Scholar]

226. Pesci, E. C., J. B. Milbank, J. P. Pearson, S. McKnight, A. S. Kende, E. P. Greenberg, and B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:11229-11234. [PMC free article] [PubMed] [Google Scholar]

227. Pfleger, A., B. Theissl, B. Oberwaldner, and M. S. Zach. 1992. Self-administered chest physiotherapy in cystic fibrosis: a comparative study of high-pressure PEP and autogenic drainage. Lung 170:323-330. [PubMed] [Google Scholar]

228. Phair, J. P., J. S. Tan, C. Watanakunakorn, L. Schwab, and L. W. Sanders. 1970. Carbenicillin treatment of Pseudomonas pulmonary infection. Use in children with cystic fibrosis. Am. J. Dis. Child. 120:22-25. [PubMed] [Google Scholar]

229. Pier, G. B. 1985. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J. Infect. Dis. 151:575-580. [PubMed] [Google Scholar]

229a. Pier, G. B. 2002. CFTR Mutations and host susceptibility to Pseudomonas aeruginosa infection. Curr. Opin. Microbiol. 5:81-86. [PubMed] [Google Scholar]

230. Pier, G. B., and P. Ames. 1984. Mediation of the killing of rough, mucoid isolates of Pseudomonas aeruginosa from patients with cystic fibrosis by the alternative pathway of complement. J. Infect. Dis. 150:223-228. [PubMed] [Google Scholar]

231. Pier, G. B., F. Coleman, M. Grout, M. Franklin, and D. E. Ohman. 2001. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect. Immun. 69:1895-1901. [PMC free article] [PubMed] [Google Scholar]

232. Pier, G. B., D. DesJardins, M. Grout, C. Garner, S. E. Bennett, G. Pekoe, S. A. Fuller, M. O. Thornton, W. S. Harkonen, and H. C. Miller. 1994. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine. Infect. Immun. 62:3972-3979 [PMC free article] [PubMed] [Google Scholar]

233. Pier, G. B., M. Grout, T. Zaidi, G. Meluleni, S. S. Mueschenborn, G. Banting, R. Ratcliff, M. J. Evans, and W. H. Colledge. 1998. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79-82. [PubMed] [Google Scholar]

234. Pier, G. B., M. Grout, and T. S. Zaidi. 1997. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl. Acad. Sci. USA 94:12088-12093. [PMC free article] [PubMed] [Google Scholar]

235. Pier, G. B., M. Grout, T. S. Zaidi, J. C. Olsen, L. G. Johnson, J. R. Yankaskas, and J. B. Goldberg. 1996. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:64-67. [PMC free article] [PubMed] [Google Scholar]

236. Pier, G. B., J. M. Saunders, P. Ames, M. S. Edwards, H. Auerbach, J. Goldfarb, D. P. Speert, and S. Hurwitch. 1987. Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older, non-colonized cystic fibrosis patients. N. Engl. J. Med. 317:793-798. [PubMed] [Google Scholar]

237. Pier, G. B., G. J. Small, and H. B. Warren. 1990. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science 249:537-540. [PubMed] [Google Scholar]

238. Potter, J. L., S. Spector, L. W. Matthews, and J. Lemm. 1969. Studies on pulmonary secretions. 3. The nucleic acids in whole pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am. Rev. Respir. Dis. 99:909-916. [PubMed] [Google Scholar]

239. Poulsen, J. H., H. Fischer, B. Illek, and T. E. Machen. 1994. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 91:5340-5344. [PMC free article] [PubMed] [Google Scholar]

240. Pratha, V. S., D. L. Hogan, B. A. Martensson, J. Bernard, R. Zhou, and J. I. Isenberg. 2000. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology 118:1051-1060. [PubMed] [Google Scholar]

241. Pugashetti, B. K., H. M. Metzger, Jr., L. Vadas, and D. S. Feingold. 1982. Phenotypic differences among clinically isolated mucoid Pseudomonas aeruginosa strains. J. Clin. Microbiol. 16:686-691. [PMC free article] [PubMed] [Google Scholar]

242. Quinn, J. P. 1998. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin Infect Dis. 27(Suppl. 1):S117-S124. [PubMed] [Google Scholar]

243. Quinton, P. M., and J. Bijman. 1983. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N. Engl. J. Med. 308:1185-1189. [PubMed] [Google Scholar]

244. Reference deleted.

245. Ramjeesingh, M., C. Li, E. Garami, L. J. Huan, K. Galley, Y. Wang, and C. E. Bear. 1999. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry 38:1463-1468. [PubMed] [Google Scholar]

246. Reference deleted.

247. Ramsey, B. W. 1996. Management of pulmonary disease in patients with cystic fibrosis. N. Engl. J. Med. 335:179-188. (Erratum, 335:1167.) [PubMed] [Google Scholar]

248. Ramsey, B. W., S. J. Astley, M. L. Aitken, W. Burke, A. A. Colin, H. L. Dorkin, J. D. Eisenberg, R. L. Gibson, I. R. Harwood, D. V. Schidlow, et al. 1993. Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am. Rev. Respir. Dis. 148:145-151. [PubMed] [Google Scholar]

249. Ramsey, B. W., M. S. Pepe, J. M. Quan, K. L. Otto, A. B. Montgomery, J. Williams-Warren, K. M. Vasiljev, D. Borowitz, C. M. Bowman, B. C. Marshall, S. Marshall, and A. L. Smith. For the Cystic Fibrosis Inhaled Tobramycin Study Group. 1999. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 340:23-30. [PubMed] [Google Scholar]

250. Ramsey, B. W., K. R. Wentz, A. L. Smith, M. Richardson, J. Williams-Warren, D. L. Hedges, R. Gibson, G. J. Redding, K. Lent, and K. Harris. 1991. Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am. Rev. Respir. Dis. 144:331-337. [PubMed] [Google Scholar]

251. Ratjen, F., G. Comes, K. Paul, H. G. Posselt, T. O. Wagner, and K. Harms. 2001. Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr. Pulmonol. 31:13-16. [PubMed] [Google Scholar]

252. Reddy, M. M., P. M. Quinton, C. Haws, J. J. Wine, R. Grygorczyk, J. A. Tabcharani, J. W. Hanrahan, K. L. Gunderson, and R. R. Kopito. 1996. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271:1876-1879. [PubMed] [Google Scholar]

253. Regelmann, W. E., G. R. Elliott, W. J. Warwick, and C. C. Clawson. 1990. Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am. Rev. Respir. Dis. 141:914-921. [PubMed] [Google Scholar]

254. Reisin, I. L., A. G. Prat, E. H. Abraham, J. F. Amara, R. J. Gregory, D. A. Ausiello, and H. F. Cantiello. 1994. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Biol. Chem. 269:20584-20591. [PubMed] [Google Scholar]

255. Restrepo, C. I., Q. Dong, J. Savov, W. I. Mariencheck, and J. R. Wright. 1999. Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 21:576-585. [PubMed] [Google Scholar]

256. Richmond, M. H., G. W. Jack, and R. B. Sykes. 1971. Mechanisms of drug resistance. The beta-lactamases of Gram-negative bacteria including pseudomonads. Ann. N. Y. Acad. Sci. 182:243-257. [PubMed] [Google Scholar]

257. Riordan, J. R., K. Deuchars, N. Kartner, N. Alon, J. Trent, and V. Ling. 1985. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316:817-819. [PubMed] [Google Scholar]

258. Riordan, J. R., J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J. L. Chou, et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066-1073. (Erratum, 245:1437.) [PubMed] [Google Scholar]

259. Rogers, D. F., E. W. Alton, A. Dewar, M. I. Lethem, and P. J. Barnes. 1993. Impaired stimulus-evoked mucus secretion in cystic fibrosis bronchi. Exp. Lung Res. 19:37-53. [PubMed] [Google Scholar]

260. Rommens, J. M., M. C. Iannuzzi, B. Kerem, M. L. Drumm, G. Melmer, M. Dean, R. Rozmahel, J. L. Cole, D. Kennedy, N. Hidaka, et al. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059-1065. [PubMed] [Google Scholar]

261. Rosenfeld, M., J. Emerson, F. Accurso, D. Armstrong, R. Castile, K. Grimwood, P. Hiatt, K. McCoy, S. McNamara, B. Ramsey, and J. Wagener. 1999. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 28:321-328. [PubMed] [Google Scholar]

262. Rovere, P., A. A. Manfredi, C. Vallinoto, V. S. Zimmermann, U. Fascio, G. Balestrieri, P. Ricciardi-Castagnoli, C. Rugarli, A. Tincani, and M. G. Sabbadini. 1998. Dendritic cells preferentially internalize apoptotic cells opsonized by anti-beta2-glycoprotein I antibodies. J. Autoimmun. 11:403-411. [PubMed] [Google Scholar]

263. Rovere, P., M. G. Sabbadini, C. Vallinoto, U. Fascio, M. Recigno, M. Crosti, P. Ricciardi-Castagnoli, G. Balestrieri, A. Tincani, and A. A. Manfredi. 1999. Dendritic cell presentation of antigens from apoptotic cells in a proinflammatory context: role of opsonizing anti-beta2-glycoprotein I antibodies. Arthritis Rheum. 42:1412-1420. [PubMed] [Google Scholar]

264. Rubartelli, A., A. Poggi, and M. R. Zocchi. 1997. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur. J. Immunol. 27:1893-1900. [PubMed] [Google Scholar]

265. Saiman, L., and A. Prince. 1993. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J. Clin. Investig. 92:1875-1880. [PMC free article] [PubMed] [Google Scholar]

266. Sanders, C. C., W. E. Sanders, Jr., R. V. Goering, and V. Werner. 1984. Selection of multiple antibiotic resistance by quinolones, beta- lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob. Agents Chemother. 26:797-801. [PMC free article] [PubMed] [Google Scholar]

267. Sato, K., and F. Sato. 1984. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J. Clin. Investig. 73:1763-1771. [PMC free article] [PubMed] [Google Scholar]

268. Saye, D. J., O. Ogunseitan, G. S. Sayler, and R. V. Miller. 1987. Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 53:987-995. [PMC free article] [PubMed] [Google Scholar]

269. Schiller, N. L., M. J. Alazard, and R. S. Borowski. 1984. Serum sensitivity of a Pseudomonas aeruginosa mucoid strain. Infect. Immun. 45:748-755. [PMC free article] [PubMed] [Google Scholar]

270. Schonheyder, H., T. Jensen, N. Hoiby, P. Andersen, and C. Koch. 1985. Frequency of Aspergillus fumigatus isolates and antibodies to aspergillus antigens in cystic fibrosis. Acta Pathol. Microbiol. Immunol. Scand. Ser. B 93:105-112. [PubMed] [Google Scholar]

271. Schoni, M. H. 1989. Autogenic drainage: a modern approach to physiotherapy in cystic fibrosis. J. R. Soc. Med. 82:32-37. [PMC free article] [PubMed] [Google Scholar]

272. Schoumacher, R. A., R. L. Shoemaker, D. R. Halm, E. A. Tallant, R. W. Wallace, and R. A. Frizzell. 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752-754. [PubMed] [Google Scholar]

273. Schreiber, R., A. Hopf, M. Mall, R. Greger, and K. Kunzelmann. 1999. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc. Natl. Acad. Sci. USA 96:5310-5315. [PMC free article] [PubMed] [Google Scholar]

274. Schreiber, R., R. Nitschke, R. Greger, and K. Kunzelmann. 1999. The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J. Biol. Chem. 274:11811-11816. [PubMed] [Google Scholar]

275. Schreiber, R., H. Pavenstadt, R. Greger, and K. Kunzelmann. 2000. Aquaporin 3 cloned from xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 475:291-295. [PubMed] [Google Scholar]

276. Schroeder, S. A., D. M. Gaughan, and M. Swift. 1995. Protection against bronchial asthma by CFTR delta F508 mutation: a heterozygote advantage in cystic fibrosis. Nat. Med. 1:703-705. [PubMed] [Google Scholar]

277. Schroeder, T. H., N. Reiniger, G. Meluleni, M. Grout, F. T. Coleman, and G. B. Pier. 2001. Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J. Immunol. 166:7410-7418. [PubMed] [Google Scholar]

278. Schroeder, T. H., T. Zaidi, and G. B. Pier. 2001. Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM1 on epithelial cells. Infect. Immun. 69:719-729. [PMC free article] [PubMed] [Google Scholar]

279. Schulz, I. J. 1969. Micropuncture studies of the sweat formation in cystic fibrosis patients. J. Clin. Investig. 48:1470-1477. [PMC free article] [PubMed] [Google Scholar]

280. Schurr, M. J., D. W. Martin, M. H. Mudd, and V. Deretic. 1994. Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J. Bacteriol. 176:3375-3382. [PMC free article] [PubMed] [Google Scholar]

281. Schurr, M. J., D. W. Martin, M. H. Mudd, N. S. Hibler, J. C. Boucher, and V. Deretic. 1993. The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol. Biol. Res. 39:371-376. [PubMed] [Google Scholar]

282. Schurr, M. J., H. Yu, J. M. Martinez-Salazar, J. C. Boucher, and V. Deretic. 1996. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J. Bacteriol. 178:4997-5004. [PMC free article] [PubMed] [Google Scholar]

283. Schwartz, M., H. K. Johansen, C. Koch, and N. J. Brandt. 1990. Frequency of the delta F508 mutation on cystic fibrosis chromosomes in Denmark. Hum. Genet. 85:427-428. [PubMed] [Google Scholar]

284. Schwiebert, E. M., M. E. Egan, T. H. Hwang, S. B. Fulmer, S. S. Allen, G. R. Cutting, and W. B. Guggino. 1995. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063-1073. [PubMed] [Google Scholar]

285. Schwiebert, E. M., T. Flotte, G. R. Cutting, and W. B. Guggino. 1994. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am. J. Physiol. 266:C1464-C1477. [PubMed] [Google Scholar]

286. Schwiebert, E. M., D. C. Gruenert, W. B. Guggino, and B. A. Stanton. 1995. G protein G alpha i-2 inhibits outwardly rectifying chloride channels in human airway epithelial cells. Am. J. Physiol. 269:C451-C456. [PubMed] [Google Scholar]

287. Seibert, F. S., P. Linsdell, T. W. Loo, J. W. Hanrahan, J. R. Riordan, and D. M. Clarke. 1996. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J. Biol. Chem. 271:27493-27499. [PubMed] [Google Scholar]

288. Shak, S., D. J. Capon, R. Hellmiss, S. A. Marsters, and C. L. Baker. 1990. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 87:9188-9192. [PMC free article] [PubMed] [Google Scholar]

289. Shalit, I., H. R. Stutman, M. I. Marks, S. A. Chartrand, and B. C. Hilman. 1987. Randomized study of two dosage regimens of ciprofloxacin for treating chronic bronchopulmonary infection in patients with cystic fibrosis. Am. J. Med. 82:189-195. [PubMed] [Google Scholar]

290. Shepherd, R., W. G. Cooksley, and W. D. Cooke. 1980. Improved growth and clinical, nutritional, and respiratory changes in response to nutritional therapy in cystic fibrosis. J. Pediatr. 97:351-357. [PubMed] [Google Scholar]

291. Sheppard, D. N., S. M. Travis, H. Ishihara, and M. J. Welsh. 1996. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J. Biol. Chem. 271:14995-15001. [PubMed] [Google Scholar]

292. Sherbrock-Cox, V., N. J. Russell, and P. Gacesa. 1984. The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr. Res. 135:147-154. [PubMed] [Google Scholar]

293. Shier, W. T. 1979. Increased resistance to influenza as a possible source of heterozygote advantage in cystic fibrosis. Med. Hypotheses 5:661-667. [PubMed] [Google Scholar]

294. Short, D. B., K. W. Trotter, D. Reczek, S. M. Kreda, A. Bretscher, R. C. Boucher, M. J. Stutts, and S. L. Milgram. 1998. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273:19797-19801. [PubMed] [Google Scholar]

295. Shumaker, H., H. Amlal, R. Frizzell, C. D. Ulrich II, and M. Soleimani. 1999. CFTR drives Na+-nHCO3− cotransport in pancreatic duct cells: a basis for defective HCO3− secretion in CF. Am. J. Physiol. 276:C16-C25. [PubMed] [Google Scholar]

296. Shumaker, H., and M. Soleimani. 1999. CFTR upregulates the expression of the basolateral Na(+)-K(+)-2Cl(−) cotransporter in cultured pancreatic duct cells. Am. J. Physiol. 277:C1100-C1110. [PubMed] [Google Scholar]

297. Shwachman, H., L. L. Kulczycki, and K.-T. Khaw. 1965. Studies in cystic fibrosis: a report on sixty-five patients over 17 years of age. Pediatrics 36:689-699. [PubMed] [Google Scholar]

298. Singh, P. K., A. L. Schaeer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762-764. [PubMed] [Google Scholar]

299. Skov, M., T. Pressler, H. E. Jensen, N. Hoiby, and C. Koch. 1999. Specific IgG subclass antibody pattern to Aspergillus fumigatus in patients with cystic fibrosis with allergic bronchopulmonary aspergillosis (ABPA). Thorax 54:44-50. [PMC free article] [PubMed] [Google Scholar]

300. Smith, D. L., L. B. Gumery, E. G. Smith, D. E. Stableforth, M. E. Kaufmann, and T. L. Pitt. 1993. Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission. J. Clin. Microbiol. 31:3017-3022. [PMC free article] [PubMed] [Google Scholar]

301. Smith, J. J., S. M. Travis, E. P. Greenberg, and M. J. Welsh. 1996. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229-236. (Erratum, 87:355, 1996.) [PubMed] [Google Scholar]

302. Smith, J. J., and M. J. Welsh. 1992. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J. Clin. Investig. 89:1148-1153. [PMC free article] [PubMed] [Google Scholar]

303. Smith, S. N., P. G. Middleton, S. Chadwick, A. Jaffe, K. A. Bush, S. Rolleston, R. Farley, S. J. Delaney, B. Wainwright, D. M. Geddes, and E. W. Alton. 1999. The in vivo effects of milrinone on the airways of cystic fibrosis mice and human subjects. Am. J. Respir. Cell Mol. Biol. 20:129-134. [PubMed] [Google Scholar]

304. Sogbanmu, M. O., and H. Bialy. 1980. Transferable drug resistance in Pseudomonas patients with premature rupture of membranes in Ile-Ife, Nigeria. Afr. J. Med. Med. Sci. 9:49-51. [PubMed] [Google Scholar]

305. Speert, D. P., and M. E. Campbell. 1987. Hospital epidemiology of Pseudomonas aeruginosa from patients with cystic fibrosis. J. Hosp. Infect. 9:11-21. [PubMed] [Google Scholar]

306. Speert, D. P., M. E. Campbell, A. G. Davidson, and L. T. Wong. 1993.Pseudomonas aeruginosa colonization of the gastrointestinal tract in patients with cystic fibrosis. J. Infect. Dis. 167:226-229. [PubMed] [Google Scholar]

307. Spies, T., M. Bresnahan, S. Bahram, D. Arnold, G. Blanck, E. Mellins, D. Pious, and R. DeMars. 1990. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348:744-747. [PubMed] [Google Scholar]

308. Stern, R. C. 1997. The diagnosis of cystic fibrosis. N. Engl. J. Med. 336:487-491 [PubMed] [Google Scholar]

309. Storey, D. G., E. E. Ujack, H. R. Rabin, and I. Mitchell. 1998. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect. Immun. 66:2521-2528. [PMC free article] [PubMed] [Google Scholar]

310. Reference deleted.

311. Stutts, M. J., C. M. Canessa, J. C. Olsen, M. Hamrick, J. A. Cohn, B. C. Rossier, and R. C. Boucher. 1995. CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847-850. [PubMed] [Google Scholar]

312. Stutts, M. J., T. C. Chinet, S. J. Mason, J. M. Fullton, L. L. Clarke, and R. C. Boucher. 1992. Regulation of C1- channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc. Natl. Acad. Sci. USA 89:1621-1625. [PMC free article] [PubMed] [Google Scholar]

313. Stutts, M. J., J. G. Fitz, A. M. Paradiso, and R. C. Boucher. 1994. Multiple modes of regulation of airway epithelial chloride secretion by extracellular ATP. Am. J. Physiol. 267:C1442-C1451. [PubMed] [Google Scholar]

314. Sugita, M., Y. Yue, and J. K. Foskett. 1998. CFTR C1- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J. 17:898-908. [PMC free article] [PubMed] [Google Scholar]

315. Suzuki, S., Y. Miyoshi, and R. Nakaya. 1978. R plasmids among Gram-negative bacteria with multiple drug resistance isolated in a general hospital. Microbiol. Immunol. 22:235-247. [PubMed] [Google Scholar]

316. Szaff, M., N. Hoiby, and E. W. Flensborg. 1983. Frequent antibiotic therapy improves survival of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection. Acta Paediatr. Scand. 72:651-657. [PubMed] [Google Scholar]

317. Szczypka, M. S., J. A. Wemmie, W. S. Moye-Rowley, and D. J. Thiele. 1994. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J. Biol. Chem. 269:22853-22857. [PubMed] [Google Scholar]

318. Tabcharani, J. A., X. B. Chang, J. R. Riordan, and J. W. Hanrahan. 1991. Phosphorylation-regulated Cl− channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628-631. [PubMed] [Google Scholar]

319. Tager, A. M., J. Wu, and M. W. Vermeulen. 1998. The effect of chloride concentration on human neutrophil functions: potential relevance to cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 19:643-652. [PubMed] [Google Scholar]

320. Taylor, R. F., L. Dalla Costa, M. E. Kaufmann, T. L. Pitt, and M. E. Hodson. 1992. Pseudomonas cepacia pulmonary infection in adults with cystic fibrosis: is nosocomial acquisition occurring? J. Hosp. Infect. 21:199-204. [PubMed] [Google Scholar]

321. Thomas, J., D. J. Cook, and D. Brooks. 1995. Chest physical therapy management of patients with cystic fibrosis. A meta-analysis. Am. J. Respir. Crit. Care Med. 151:846-850 [PubMed] [Google Scholar]

322. Torrens, J. K., P. Dawkins, S. P. Conway, and E. Moya. 1998. Non-tuberculous mycobacteria in cystic fibrosis. Thorax 53:182-185. [PMC free article] [PubMed] [Google Scholar]

323. Tosi, M. F., H. Zakem-Cloud, C. A. Demko, J. R. Schreiber, R. C. Stern, M. W. Konstan, and M. Berger. 1995. Cross-sectional and longitudinal studies of naturally occurring antibodies to Pseudomonas aeruginosa in cystic fibrosis indicate absence of antibody-mediated protection and decline in opsonic quality after infection. J. Infect. Dis. 172:453-461. [PubMed] [Google Scholar]

324. Travis, S. M., B. A. Conway, J. Zabner, J. J. Smith, N. N. Anderson, P. K. Singh, E. P. Greenberg, and M. J. Welsh. 1999. Activity of abundant antimicrobials of the human airway. Am. J. Respir. Cell Mol. Biol. 20:872-879. [PubMed] [Google Scholar]

325. Travis, S. M., P. K. Singh, and M. J. Welsh. 2001. Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr. Opin. Immunol. 13:89-95. [PubMed] [Google Scholar]

326. Tsui, L. C. 1990. Population analysis of the major mutation in cystic fibrosis. Hum. Genet. 85:391-392. [PubMed] [Google Scholar]

327. Tsui, L. C., M. Buchwald, D. Barker, J. C. Braman, R. Knowlton, J. W. Schumm, H. Eiberg, J. Mohr, D. Kennedy, N. Plavsic, et al. 1985. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230:1054-1057. [PubMed] [Google Scholar]

328. Ulrich, M., S. Herbert, J. Berger, G. Bellon, D. Louis, G. Munker, and G. Doring. 1998. Localization of Staphylococcus aureus in infected airways of patients with cystic fibrosis and in a cell culture model of S. aureus adherence. Am. J. Respir. Cell Mol. Biol. 19:83-91. [PubMed] [Google Scholar]

329. Vishwanath, S., R. Ramphal, C. M. Guay, D. DesJardins, and G. B. Pier. 1988. Respiratory mucin inhibits the opsonophagocytic killing of Pseudomonas aeruginosa. Infect. Immun. 56:2218-2222. [PMC free article] [PubMed] [Google Scholar]

330. Wainwright, B. J., P. J. Scambler, J. Schmidtke, E. A. Watson, H. Y. Law, M. Farrall, H. J. Cooke, H. Eiberg, and R. Williamson. 1985. Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318:384-385. [PubMed] [Google Scholar]

331. Wallis, C., and A. Prasad. 1999. Who needs chest physiotherapy? Moving from anecdote to evidence. Arch. Dis. Child. 80:393-397. [PMC free article] [PubMed] [Google Scholar]

332. Walters, M. N.-I. 1965. The ductular cell in pancreatic cystic fibrosis. J. Pathol. Bacteriol. 90:45-52. [PubMed] [Google Scholar]

333. Ward, C. L., S. Omura, and R. R. Kopito. 1995. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121-127. [PubMed] [Google Scholar]

334. Webber, B. A., and J. A. Pryor. 1989. Respiratory physiotherapy for cystic fibrosis. J. Pediatr. 115:167-168. [PubMed] [Google Scholar]

335. Welsh, M. J., G. M. Denning, L. S. Ostedgaard, and M. P. Anderson. 1993. Dysfunction of CFTR bearing the delta F508 mutation. J. Cell. Sci. Suppl. 17:235-239. [PubMed] [Google Scholar]

336. White, G. P., and N. W. Dunn. 1977. Apparent fusion of the TOL plasmid with the R91 drug resistance plasmid in Pseudomonas aeruginosa. Aust. J. Biol. Sci. 30:345-355. [PubMed] [Google Scholar]

337. Whiteford, M. L., J. D. Wilkinson, J. H. McColl, F. M. Conlon, J. R. Michie, T. J. Evans, and J. Y. Paton. 1995. Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 50:1194-1198. [PMC free article] [PubMed] [Google Scholar]

338. Widdicombe, J. H., M. J. Welsh, and W. E. Finkbeiner. 1985. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc. Natl. Acad. Sci. USA 82:6167-6171. [PMC free article] [PubMed] [Google Scholar]

339. Wiedermann, U., A. Tarkowski, T. Bremell, L. A. Hanson, H. Kahu, and U. I. Dahlgren. 1996. Vitamin A deficiency predisposes to Staphylococcus aureus infection. Infect. Immun. 64:209-214. [PMC free article] [PubMed] [Google Scholar]

340. Wiesemann, H. G., G. Steinkamp, F. Ratjen, A. Bauernfeind, B. Przyklenk, G. Doring, and H. von der Hardt. 1998. Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Pediatr. Pulmonol. 25:88-92. [PubMed] [Google Scholar]

341. Wilkinson, D. J., T. V. Strong, M. K. Mansoura, D. L. Wood, S. S. Smith, F. S. Collins, and D. C. Dawson. 1997. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am. J. Physiol. 273:L127-L133. [PubMed] [Google Scholar]

342. Wills, P. J., R. L. Hall, W. Chan, and P. J. Cole. 1997. Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea. J. Clin. Investig. 99:9-13. [PMC free article] [PubMed] [Google Scholar]

343. Wilschanski, M., J. Zielenski, D. Markiewicz, L. C. Tsui, M. Corey, H. Levison, and P. R. Durie. 1995. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J. Pediatr. 127:705-710. [PubMed] [Google Scholar]

344. Wine, J. J., and C. K. Sole. 1990. Chloride channels in cystic fibrosis patients. Science 247:222.. [PubMed] [Google Scholar]

345. Winter, M. C., and M. J. Welsh. 1997. Stimulation of CFTR activity by its phosphorylated R domain. Nature 389:294-296. [PubMed] [Google Scholar]

346. Wozniak, D. J., and D. E. Ohman. 1994. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J. Bacteriol. 176:6007-6014. [PMC free article] [PubMed] [Google Scholar]

347. Wright, S. W., and N. E. Morton. 1968. Genetic studies on cystic fibrosis in Hawaii. Am. J. Hum. Genet. 20:157-169. [PMC free article] [PubMed] [Google Scholar]

348. Xu, K. D., G. A. McFeters, and P. S. Stewart. 2000. Biofilm resistance to antimicrobial agents. Microbiology 146:547-549. [PubMed] [Google Scholar]

349. Yahr, T. L., L. M. Mende-Mueller, M. B. Friese, and D. W. Frank. 1997. Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. J. Bacteriol. 179:7165-7168. [PMC free article] [PubMed] [Google Scholar]

350. Zach, M. S. 1990. Lung disease in cystic fibrosis—an updated concept. Pediatr. Pulmonol. 8:188-202. [PubMed] [Google Scholar]

351. Zielenski, J. 2000. Genotype and phenotype in cystic fibrosis. Respiration 67:117-133. [PubMed] [Google Scholar]

Which is the best description of the binding problem?

"The binding problem is, basically, the problem of how the unity of conscious perception is brought about by the distributed activities of the central nervous system" (Revonsuo and Newman (1999)). In its most general form it arises whenever information from distinct populations of neurons must be combined.

Which structure would play a role in quickly alerting someone to a gas leak in his or her home?

5. Which of the following would play a role in quickly alerting you to a gas leak in your car? Explanation: A Olfactory (smell) receptors in the nasal passages would detect the gas molecules and send impulses directly to the brain for fast perception and response.

What is the stimulus for vision?

Light, in the form of electromagnetic energy, is the stimulus for vision.

Which receptor cells most directly enable us to distinguish different wavelengths of light?

Cones are visual neurons that are specialized in detecting fine detail and colours. The five million or so cones in each eye enable us to see in colour, but they operate best in bright light. The cones are located primarily in and around the fovea, which is the central point of the retina.

zusammenhängende Posts

Toplist

Neuester Beitrag

Stichworte