What is an impediment to the regeneration of axons in the mammalian central nervous system?

References

  • Aguayo, A. J. (1985) Capacity for renewed axonal growth in the mammalian central nervous system. InCentral Nervous System Plasticity and Repair (edited byBignami, A.) pp. 31–40. New York: Raven Press.

    Google Scholar 

  • Anderton, B. H., Breinburg, D., Downes, M. J., Green, P. J., Tomlinson, B. E., Ulrich, J., Wood, J. N. &Kahn, J. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants.Nature 298, 84–6.

    PubMed  Google Scholar 

  • Barron, K. D. (1983) Comparative observations on the cytologie reactions of central and peripheral nerve cells to axotomy. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. &Reier, P. J.) pp. 7–40. New York: Raven Press.

    Google Scholar 

  • Berry, M., Maxwell, W. L., Logan, A., Mathewson, A., Mcconnell, P., Ashhurst, D. E. &Thomas, G. H. (1983) Deposition of scar tissue in the central nervous system.Acta Neurochirurgica 32, 31–53.

    PubMed  Google Scholar 

  • Bray, G. M., Vidal-Sanz, M. &Aguayo, A. J. (1987) Regeneration of axons from the central nervous system of adult rats.Progress in Brain Research 71, 373–9.

    PubMed  Google Scholar 

  • Campbell, G., Anderson, P. N., Turmaine, M. &Lieberman, A. R. (1991) GAP-43 in the axons of mammalian CNS neurons regenerating into peripheral nerve grafts.Experimental Brain Research 87, 66–74.

    Google Scholar 

  • Caroni, P. &Schwab, M. E. (1988a) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading.Journal of Cell Biology 106, 1281–8.

    PubMed  Google Scholar 

  • Caroni, P. &Schwab, M. E. (1988b) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter.Neuron 1, 85–96.

    PubMed  Google Scholar 

  • Curtis, R., Averill, S., Priestley, J. V. &Wilkin, G. P. (1993) The distribution of GAP-43 in normal rat spinal cord.Journal of Neurocytology, 000–000.

  • Curtis, R., Hardy, R., Reynolds, R., Spruce, B. A. &Wilkin, G. P. (1991) Down-regulation of GAP-43 during oligodendrocyte development and lack of expression by astrocytesin vivo: implications for macroglial differentiation.European Journal of Neuroscience 3, 876–86.

    Google Scholar 

  • Doster, S. K., Lozano, A. M., Aguayo, A. J. &Willard, M. B. (1991) Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury.Neuron 6, 635–47.

    PubMed  Google Scholar 

  • Fernandez, E., Pallini, R. &Mercanti, D. (1990) Effects of topically administered nerve growth factor on axonal regeneration in peripheral nerve autografts implanted in the spinal cord of rats.Neurosurgery 26, 37–42.

    PubMed  Google Scholar 

  • Gage, F. H., Armstrong, D. M., Williams, L. R. &Varon, S. (1988) Morphological response of axotomized septal neurons to nerve growth factor.Journal of Comparative Neurology 269, 147–55.

    PubMed  Google Scholar 

  • Gelderd, J. B. (1990) Evaluation of blood vessel and neurite growth into a collagen matrix placed within a surgically created gap in rat spinal cord.Brain Research 511, 80–92.

    PubMed  Google Scholar 

  • Goldstein, M. E., Cooper, H. S., Bruce, J., Garden, M. J., Lee, V. M-Y. &Schlaepfer, W. W. (1987) Phosphorylation of neurofilament proteins and chromatolysis following transaction of rat sciatic nerve.Journal of Neuroscience 7, 1586–94.

    PubMed  Google Scholar 

  • Gorgels, T. G. M. F., Van Lookeren Campagne, M., Obstreicher, A. B., Gribnau, A. A. M. &Gispen, W. H. (1989) B-50/GAP-43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract.Journal of Neuroscience 9, 3861–9.

    PubMed  Google Scholar 

  • Goslin, K., Schreyer, D. J., Skene, J. H. P. &Banker, G. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.Nature 336, 672–4.

    PubMed  Google Scholar 

  • Guth, L., Barrett, C. P., Donati, E. J., Anderson, F. D., Smith, M. V. &Lifson, M. (1985) Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion.Experimental Neurology 88, 1–12.

    PubMed  Google Scholar 

  • Hall, S. &Berry, M. (1989) Electron microscopic study of the interaction of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts.Journal of Neurocytology 18, 171–84.

    PubMed  Google Scholar 

  • Huang, W. M., Gibson, S. J., Facer, P., Gu, J. &Polak, J. M. (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating.Histochemistry 77, 275–9.

    PubMed  Google Scholar 

  • Jacobson, R. D., Viràg, I. &Skene, J. H. P. (1986) A protein associated with axon growth, GAP-43 is widely distributed and developmentally regulated in rat CNS.Journal of Neuroscience 6, 1843–55.

    PubMed  Google Scholar 

  • Kawaja, M. D. &Gage, F. H. (1991) Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor.Neuron 7, 1019–30.

    PubMed  Google Scholar 

  • Kiernan, J. A. (1981)Histological and Histochemical Methods: Theory and Practice. Oxford: Pergamon Press.

    Google Scholar 

  • Krikorian, J. G., Guth, L. &Donati, E. J. (1981) Origin of the connective tissue scar in the transected rat spinal cord.Experimental Neurology 72, 692–707.

    Google Scholar 

  • Lindsay, R. M. (1979) Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones.Nature 282, 80–2.

    PubMed  Google Scholar 

  • Lindsay, R. M. (1986) Reactive gliosis. InAstrocytes Vol. 3. (edited byFederoff, S. &Vernadakis, A.) pp. 231–62. London: Academic Press.

    Google Scholar 

  • Liuzzi, F. J. &Lasek, R. J. (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway.Science 237, 642–5.

    PubMed  Google Scholar 

  • Lu, X. &Richardson, P. M. (1991) Inflammation near the nerve cell body enhances axonal regeneration.Journal of Neuroscience 11, 972–8.

    PubMed  Google Scholar 

  • Mansour, H., Bignami, A., Labkovsky, B. &Dahl, D. (1989) Neurofilament phosphorylation in neuronal perikarya following axotomy: a study of rat spinal cord with ventral and dorsal root transection.Journal of Comparative Neurology 283, 481–5.

    PubMed  Google Scholar 

  • Meiri, K. F., Pfenninger, K. H. &Willard, M. B. (1986) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones.Proceedings of the National Academy of Sciences (USA) 83, 3537–41.

    Google Scholar 

  • Meiri, K. F., Willard, M. &Johnson, M. I. (1988) Distribution and phosphorylation of the growth-associated protein GAP-43 in regenerating sympathetic neurons in culture.Journal of Neuroscience 8, 2571–81.

    PubMed  Google Scholar 

  • Neugebauer, K. M., Tomaselli, K. J., Lilien, J. &Reichardt, L. F. (1988) N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytesin vitro.Journal of Cell Biology 107, 1177–87.

    PubMed  Google Scholar 

  • Noble, M., Fok-Seang, J. &Cohen, J. (1984) Glia are a unique substrate for thein vitro growth of central nervous system neurons.Journal of Neuroscience 4, 1892–903.

    PubMed  Google Scholar 

  • Orita, T., Akimura, T., Kamiryo, T., Nishizaki, T., Furutani, Y., Harada, K., Ikeyama, Y. &Aoki, H. (1989) Cerebral endothelial regeneration following experimental brain injury. Variation in the regeneration process according to the severity of injury.Acta Neuropathologica 77, 397–401.

    PubMed  Google Scholar 

  • Osborn, M. &Weber, K. (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin containing structures. InMethods in Cell Biology. Volume 24 (edited byWilson, L.) pp. 97–132. New York: Academic Press.

    Google Scholar 

  • Ramon Y Cajal, S. (1928)Degeneration and Regeneration of the Nervous System. Vol. 2. London: Oxford University Press.

    Google Scholar 

  • Reier, P. J. (1986) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. InAstrocytes. Vol. 3. (edited byFederoff, S. &Vernadakis, A.) pp. 263–324. London: Academic Press.

    Google Scholar 

  • Reier, P. J., Stensaas, L. J. &Guth, L. (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. &Reier, P. J.) pp. 163–95. New York: Raven Press.

    Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Aguayo, A. J. (1984) Regeneration of long spinal axons in the rat.Journal of Neurocytology 13, 165–82.

    PubMed  Google Scholar 

  • Richardson, P. M. &Verge, V. M. K. (1986) The induction of a regenerative propensity in sensory neurons following peripheral axonal injury.Journal of Neurocytology 15, 585–94.

    PubMed  Google Scholar 

  • Rosenberg, M. B., Friedman, T., Robertson, R. C., Tuszynski, M., Wolff, J. A., Breakfield, X. O. &Gage, F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression.Science 242, 1575–8.

    PubMed  Google Scholar 

  • Schreyer, D. J. &Skene, J. H. P. (1991) Fate of GAP-43 in ascending spinal axons of DRG neurons after peripheral nerve injury: delayed accumulation and correlation with regenerative potential.Journal of Neuroscience 11, 3738–51.

    PubMed  Google Scholar 

  • Shea, T. B., Perrone-Bizzozero, N. I., Beerman, M. L. &Benowitz, L. I. (1991) Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis.Journal of Neuroscience 11, 1685–90.

    PubMed  Google Scholar 

  • Shigematsu, K., Kamo, H., Akiguchi, I., Kimura, J., Kameyama, M. &Kimura, H. (1989) Neovascularization in kainic acid-induced lesions of rat striatum. An immunohistochemical study with laminin.Brain Research 501, 215–22.

    PubMed  Google Scholar 

  • Skene, J. H. P. (1984) Growth-associated proteins and the curious dichotomies of nerve regeneration.Cell 37, 697–700.

    PubMed  Google Scholar 

  • Skene, J. H. P., Jacobson, R. D., Snipes, G. J., Mcguire, C. B., Norden, J. J. &Freeman, J. A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes.Science 233, 783–6.

    Google Scholar 

  • Skene, J. H. P. &Viràg, I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43.Journal of Cell Biology 108, 613–24.

    PubMed  Google Scholar 

  • Skene, J. H. P. &Willard, M. (1981a) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells.Journal of Cell Biology 89, 86–95.

    PubMed  Google Scholar 

  • Skene, J. H. P. &Willard, M. (1981b) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.Journal of Cell Biology 89, 96–103.

    PubMed  Google Scholar 

  • Tetzlaff, W., Alexander, S. W., Miller, F. D. &Bisby, M. A. (1991). Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43.Journal of Neuroscience 11, 2528–44.

    PubMed  Google Scholar 

  • Verhaagen, J., Vanhooff, C. O. M., Edwards, P. M., De Graan, P. N. E., Obstreicher, A. B., Schotman, P., Jennekens, F. G. I. &Gispen, W. H. (1986) The kinase C substrate protein B-50 and axonal regeneration.Brain Research Bulletin 17, 737–41.

    PubMed  Google Scholar 

Download references

What is one impediment to the regeneration of axons in the mammalian central nervous system?

Axonal Growth in the Adult Mammalian Nervous System Another barrier to CNS regeneration is the glial scar, which consists mainly of reactive astrocytes and proteoglycans. As early as Ramon y Cajal (Cajal, 1928) glial scar tissue was implicated as an impediment to adult axonal regeneration after CNS injury.

Why do CNS in mammals not regenerate?

CNS neurons do not upregulate growth-associated genes to the same extent as do PNS neurons. Consequently, their ability to regenerate is limited even in the absence of inhibitors.

What prevents regeneration within the CNS?

Glial cell scar formation is induced following damage to the nervous system. In the central nervous system, this glial scar formation significantly inhibits nerve regeneration, which leads to a loss of function.

Why do nervous system cells have trouble with regeneration?

The myelin around the axon helps the nerve signals to pass quickly. Myelin is essential for the function of the entire nervous system. Still, in case of injury, it hinders the repair process because of the presence of associated myelin integrins (MAI), a component of CNS myelin expressed by oligodendrocytes.

zusammenhängende Posts

Toplist

Neuester Beitrag

Stichworte