Which of the following is an important factor in making a forecasting model selection

SELECTING THE RIGHT FORECASTING MODEL

A number of factors influence the selection of a forecasting model. They include the following:

  1. Amount and type of available data. Quantitative forecasting models require certain types of data. If there are not enough data in quantifiable form, it may be necessary to use a qualitative forecasting model. Also, different quantitative models require different amounts of data. Exponential smoothing requires a small amount of historical data, whereas linear regression requires considerably more. The amount and type of data available play a large role in the type of model that can be considered.
  2. Degree of accuracy required. The type of model selected is related to the degree of accuracy required. Some situations require only rough forecast estimates, whereas others require precise accuracy. Often, the greater the degree of accuracy required, the higher is the cost of the forecasting process. This is because increasing accuracy means increasing the costs of collecting and processing data, as well as the cost of the computer software required. A simpler and less costly forecasting model may be better overall than one that is very sophisticated but expensive.
  3. Length of forecast horizon. Some forecasting models are better suited to short forecast horizons, whereas others are better for long horizons. It is very important to select the correct model for the forecast horizon being used. For example, a manufacturer that wishes to forecast sales of a product ...

Forecasting methods usually fall into three categories: statistical models, machine learning models and expert forecasts, with the first two being automated and the latter being manual. Statistical methods, including time series models and regression analysis, are considered traditional, while machine learning methods, such as neural network, random forest and the gradient-boosting model, are more modern. Yet when selecting a forecasting method, the “modern vs. traditional” or “automated vs. manual” comparisons can mislead. Preferences will depend on the modeler’s training: Those with data science training will prefer machine learning models, while modelers with business backgrounds have more trust in expert forecasts. In fact, each of the three methods has different strengths and can play important roles in forecasting.

Statistical models

Statistical models usually have better explanatory power because they demonstrate how the forecast variable projects out or how causal factors drive the forecast variable in an explicit form. Because of the explicit form of such modeling, however, the causal relationship may be relatively simpler than what machine learning models can model.

The highly predictable behavior of statistical models makes them suited for individual series, such as a sales forecast for a particular SKU in a store or a total sales forecast for all SKUs in the store. Since each individual series is modeled independently, parallelization of the modeling process should be considered for scaling purposes.

Different statistical models use different assumptions so that they work fairly well on a specific pattern, such as the Croston method for an intermittent demand series or an autoregressive integrated moving average model for series that are autocorrelated. Due to the specific assumptions, applying statistical models usually requires the modeler to have deeper analytical knowledge.

Machine learning models

Machine learning models can model complicated relationships between the causal factors and forecast variables. They work more similarly to a black box, however, in that they cannot express such relationships in a clear form. There have been efforts to make the black box more interpretable, with the interpretability coming from ranking the importance of the factors, such as the Gini index in a random forecast model, or a unified approach, such as Shapley additive explanations.

For individual series, machine learning models could be computationally slow and have poor performance due to overfitting. A good strategy, therefore, is to apply them to modeling a group of series together, such as sales forecasts for all SKUs in a store.

Since this consists of one big generic model for a group, machine learning models usually have good overall performance, but they might not generate similarly strong results at individual series levels. The differences in forecast quality usually come from feature generation and model parameter tuning, which require the modeler to have a good understanding of the data and spend time on an iterative process of trial and error.

Expert forecasts

Experts can excel at projecting qualitative information in a forecast. In the fashion industry, for example, trend information is hard to quantify, which makes an expert’s experiences and judgment more valuable. In addition, automated forecasts assume that the future will resemble the past. When a market changes quickly, an expert who understands the market dynamics will have a more reliable sense of its future direction. Expert forecasts are subjective, however, and prone to bias. Forecast quality will hinge on the expert’s experience, the information he or she was exposed to and subjective impressions.

The amount of data collected is one factor that helps determine the forecast method. Expert forecasts require minimal or no data. Statistical models have more data requirements as the number of observations must exceed the parameters used in the model. Machine learning models tend to work effectively only on large data sets, since the models often are more complicated—for example, a deep learning model will not forecast market growth because the data is too small and noisy for the model.

Stability requirements of forecast results also come into play. If a company wants high consistency of results each time it reruns the model, it should first consider a statistical model. This type of model runs individual series separately, has the flexibility to remodel a portion of the series as needed and, because of the high predictability of the model form, produces more stable results. Machine learning models, by contrast, treat a group of series as one big model and are more unpredictable in form, so they must be retrained for all series and may create a less stable forecast. The differences in stability between the two types of methods, however, will depend on the particular business and the data.

It’s essential to understand the priorities of the people using the forecast. We have seen situations in which the users had a complicated and highly automated business, so a machine learning model addressed their needs. In another situation, the companies originally said they wanted a state-of-art machine learning model, but the end users of the forecasting system either did not trust results from black box models or needed additional information from the model to make decisions. Instead of implementing a forecast system that no one will use, engaging end users in the design phase to understand what decisions they want out of the forecast, how much interpretability they need to make the decision and what type of models they are comfortable with to improve the forecasting process all raise the odds of success.

When the situation permits, the best strategy may be to combine the strengths of different methods. We have done this in several recent demand-forecasting cases. By combining forecast results from statistical methods targeting individual series patterns with machine learning methods, which model the effect of complicated causal factors, we have significantly improved forecast accuracy for a large grocery store chain. By designing an appropriate tool to present the automated forecasting results and facilitate the forecasting adjustment process, a food company combined an expert forecast with the automated forecast to incorporate both the qualitative information and quantified results. This not only improved forecast accuracy, which led to millions of dollars in inventory cost savings and higher revenue from a reduction in lost sales, but also instilled more trust in the forecast from end users, making it easier for users to actually adopt the forecast and apply it in the business instead of producing numbers no one uses.

Yue Li is an expert with Bain & Company’s Advanced Analytics practice. She is based in Los Angeles. 

What are important factors in choosing a forecasting technique?

The selection of a method depends on many factors—the context of the forecast, the relevance and availability of historical data, the degree of accuracy desirable, the time period to be forecast, the cost/ benefit (or value) of the forecast to the company, and the time available for making the analysis.

What are the 3 most important components of forecasting?

Elements of Forecasting:.
James W. Redfield has summarized the essential elements as follows:.
Developing the ground work:.
Estimating future business:.
Comparing actual with estimated results:.
Refining the Forecast Process:.

What are the 4 types of forecasting model?

While there are a wide range of frequently used quantitative budget forecasting tools, in this article we focus on the top four methods: (1) straight-line, (2) moving average, (3) simple linear regression, and (4) multiple linear regression.

What are the 3 forecasting techniques?

Qualitative Methods - Where historical evidence is unavailable, qualitative techniques are sufficient. ... .
Quantitative Methods - Its future data as a result of historical data is done using quantitative forecasting method. ... .
Moving Average - All future values are predicted to be equal to the mean of the previous data..