Wer ist ariel etiell

  • Journal List
  • Biodivers Data J
  • v.9; 2021
  • PMC8249360

Biodivers Data J. 2021; 9: e66509.

Abstract

Background

Climate change has been widely accepted as one of the major threats for global biodiversity and understanding its potential effects on species distribution is crucial to optimise conservation planning in future scenarios under global change. Integrating detailed climatic data across spatial and temporal scales into species distribution modelling can help to predict potential changes in biodiversity. Consequently, this type of data can be useful for developing efficient biodiversity management and conservation planning. The provision of such data becomes even more important in highly biodiverse regions, currently suffering from climatic and landscape changes. The Transboundary Biosphere Reserve of Meseta Ibérica (BRMI; Portugal-Spain) is one of the most relevant reserves for wildlife in Europe. This highly diverse region is of great ecological and socio-economical interest, suffering from synergistic processes of rural land abandonment and climatic instabilities that currently threaten local biodiversity.

Aiming to optimise conservation planning in the Reserve, we provide a complete dataset of historical and future climate models (1 x 1 km) for the BRMI, used to build a series of distribution models for 207 vertebrate species. These models are projected for 2050 under two climate change scenarios. The climatic suitability of 52% and 57% of the species are predicted to decrease under the intermediate and extreme climatic scenarios, respectively. These models constitute framework data for improving local conservation planning in the Reserve, which should be further supported by implementing climate and land-use change factors to increase the accuracy of future predictions of species distributions in the study area.

New information

Herein, we provide a complete dataset of state-of-the-art historical and future climate model simulations, generated by global-regional climate model chains, with climatic variables resolved at a high spatial resolution (1 × 1 km) over the Transboundary Biosphere Reserve of Meseta Ibérica. Additionally, a complete series of distribution models for 207 species (168 birds, 24 reptiles and 15 amphibians) under future (2050) climate change scenarios is delivered, which constitute framework data for improving local conservation planning in the reserve.

Keywords: biodiversity, climate change, climate models, conservation, Iberian Peninsula, species distribution models.

Introduction

Understanding how species are globally distributed and identifying the key factors that influence their spatial and temporal distribution patterns are essential first steps for solid biodiversity conservation planning (Whittaker et al. 2005). Species distributions are primarily shaped by historical and contemporary events, in which environmental and landscape factors play a decisive role in determining spatial and temporal distribution status and trends (Nogués-Bravo et al. 2018). In this regard, climate change has been widely acknowledged as one of the major current and future threats for global biodiversity (Sippel et al. 2020, Raven and Wagner 2021), causing geographical distribution shifts of a large number of species and, consequently, leading to species extinction events, the disruption of entire ecosystems and also deprivation of human well-being (Pecl et al. 2017, Turner et al. 2020). As such, providing detailed and informative climatic data at both spatial and temporal scales is paramount for better predicting potential environmental impacts on biodiversity and associated ecosystems, which ultimately support optimised conservation planning under global change (Newbold 2018).

One of the most important tools for assisting efficient management and biodiversity conservation planning is species distribution modelling (SDMs; Araújo et al. 2019). These methods derive statistical relationships between geographical species occurrences and environmental predictors (such as climatic factors), which can be consequently used to spatially and temporally predict species distributions under different environmental scenarios (Guisan et al. 2017). In order to efficiently support biodiversity conservation under future environmental conditions, the combined effect of landscape, concrete land cover information and climate factors must be taken into account to improve the model predictive accuracy of potential future changes of species distributions (Triviño et al. 2018, Pausas and Millán 2019).

Improving the predictive power of SDMs becomes paramount in highly biodiverse regions currently under severe climatic and landscape changes. In Europe, Mediterranean rural areas are perfect examples of highly diverse regions from an ecological and socio-economical point of view, suffering from increased effects of landscape and climatic changes (Navarro and Pereira 2012). For instance, the Transboundary Biosphere Reserve of Meseta Ibérica (BRMI), one of the largest reserves and important areas for wildlife in Europe, with around 1,132,000 hectares (www.unesco.org), is currently subjected to processes of rural land abandonment and climatic instabilities that have contributed to the disruption of ecosystem processes (e.g. escalation of extreme wildfires; Sil et al. 2019). The Reserve encompasses five natural parks and several Natura 2000 sites, comprising high landscape heterogeneity and biodiversity. As an example, the Reserve supports a large number of vertebrate species (around 250 species; www.unesco.org), including several emblematic taxa of conservation concern, such as the black stork [Ciconia nigra (Linnaeus, 1758)], the Egyptian vulture [Neophron pernocterus (Linnaeus, 1766)], the Iberian frog [Rana iberica (Boulenger, 1879)] and the Seoane’s viper [Viper seoanei (Lataste, 1879)]. However, the current climatic and landscapes changes constitute major threats for the local biodiversity and compiling framework data about how these impacts might influence species distribution patterns in the future could contribute to regional and local conservation efforts.

Here, we present a complete dataset of historical (serving as temporal baseline data) and future climate models with a high spatial resolution (1 × 1 km) for the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain), as well as a complete series of distribution models for 207 vertebrate species (168 birds, 24 reptiles and 15 amphibians), projected for a historical period (1989-2005) and for future climate change scenarios (2021-2050) in the Reserve.

General description

Purpose

These datasets were developed to provide framework data for biodiversity conservation in one of the most diverse Biosphere Reserves in Europe.

Additional information

The climate model datasets (comprising three main variables – daily total precipitation, maximum and minimum temperatures) are provided for two main areas: the Iberian Peninsula and the Transboundary Biosphere Reserve of Meseta Ibérica (Fig. 1). The climate model simulations are provided for one historical period (daily data from 1989 to 2005) in the Iberian Peninsula (at 9 × 9 km) and two periods (daily data from 1989 to 2005 and from 2021 to 2050) in the Meseta Ibérica (at 1 × 1 km). Future climate data are available from four Global-Regional Climate Model chains and two Representative Concentration Pathways (RCP 4.5 and 8.5). The SDMs are provided for both areas (10 × 10 km in the Iberian Peninsula and 1 × 1 km in the Meseta Ibérica) and for one historical period in the Iberian Peninsula (mean between 1989-2005) and two periods in the Meseta Ibérica (mean between 1989-2005 and mean between 2021 and 2050).

The data are provided in compressed folders, containing the following information:

  1. Climate model files encompassing three climatic variables in netCDF format (files organised according to each area and temporal period) and the corresponding bioclimatic variables available in .tiff format;

  2. Species models for 207 vertebrate species, including the corresponding spatial projections for the historic and future scenarios (files organised according to each species, area and temporal period).

Sampling methods

Step description

Presence/absence data for bird species present in the Iberian Peninsula were obtained from the Spanish and Portuguese Atlas of Breeding Birds, at 10 km resolution (Martí and Del Moral 2003, Equipa Atlas 2008). Presence/absence data for reptile and amphibian species were extracted from the Atlas of Amphibians and Reptiles of Portugal and Spain, at 10 km resolution (Pleguezuelos et al. 2002, Loureiro et al. 2008). Only native species with at least one presence in the BRMI were selected. In addition, species with less than 30 presences in the Iberian Peninsula were excluded to avoid model overfitting (see Araújo et al. 2019). In the end, data were obtained for 207 species: 168 birds, 24 reptiles and 15 amphibians (see Table 1). Taking into account the taxonomic uncertainties of some species (see Table 1), the species list was determined according to the most recently updated versions of the Altases to avoid any taxonomic conflicts (Sillero et al. 2014).

Table 1.

Species information: taxonomic group, scientific name, species code and number of presences used for modelling (N). The quality threshold (area under the curve - AUC) used for model selection (to be included on ensemble modelling) are indicated. The accuracy metrics of ensemble species distribution models (SDMs), measured by the AUC and True Skill Statistics (TSS), are also mentioned. Ten model replicates were conducted for each species.

Group Scientific name Code N AUC threshold Climate models
AUC TSS
Amphibia Alytes cisternasii ACI 1253 0.8 0.96 0.795
Amphibia Alytes obstetricans AOB 2336 0.8 0.927 0.681
Amphibia Bufo spinosus BSP 4471 0.7 0.915 0.654
Amphibia Discoglossus galganoi DGA 1930 0.7 0.993 0.924
Amphibia Epidalea calamita ECA 3973 0.7 0.949 0.757
Amphibia Hyla molleri HMO 1502 0.8 0.957 0.759
Amphibia Lissotriton boscai LBO 1695 0.8 0.948 0.76
Amphibia Lissotriton helveticus LHE 701 0.8 0.971 0.833
Amphibia Pelobates cultripes PCU 2221 0.8 0.968 0.786
Amphibia Pelophylax perezi PPE 5587 0.8 0.989 0.932
Amphibia Pelodytes punctatus PPU 1765 0.7 0.95 0.776
Amphibia Pleurodeles waltl PWA 1897 0.8 0.918 0.659
Amphibia Rana iberica RIB 953 0.8 0.984 0.871
Amphibia Salamandra salamandra spp. SSA 2422 0.8 0.928 0.706
Amphibia Triturus marmoratus spp. TMA 2485 0.7 0.924 0.673
Birds Accipiter gentilis ACCGENT 2266 0.7 0.991 0.895
Birds Accipiter nisus ACCNISU 2565 0.7 0.984 0.88
Birds Acrocephalus arundinaceus ACRARUN 1348 0.8 0.99 0.908
Birds Acrocephalus scirpaceus ACRSCIR 1581 0.7 0.991 0.912
Birds Aegithalos caudatus AEGCAUD 4157 0.7 0.888 0.599
Birds Alauda arvensis ALAARVE 2999 0.8 0.896 0.62
Birds Alcedo atthis ALCATTH 2285 0.7 0.861 0.542
Birds Alectoris rufa ALERUFA 5050 0.7 0.946 0.803
Birds Anas clypeata ANACLYP 141 0.8 0.987 0.945
Birds Anas platyrhynchos ANAPLAT 3354 0.7 0.871 0.56
Birds Anas strepera ANASTRE 305 0.8 0.981 0.913
Birds Anthus campestris ANTCAMP 2248 0.8 0.896 0.614
Birds Anthus spinoletta ANTSPIN 439 0.8 0.987 0.908
Birds Anthus trivialis ANTTRIV 1163 0.8 0.97 0.846
Birds Apus melba APUMELB 1047 0.7 0.975 0.849
Birds Apus pallidus APUPALL 847 0.8 0.945 0.75
Birds Aquila chrysaetos AQUCHRY 700 0.7 0.968 0.835
Birds Ardea cinerea ARDCINE 543 0.7 0.994 0.944
Birds Ardea purpurea ARDPURP 259 0.8 0.977 0.872
Birds Asio flammeus ASIFLAM 77 0.8 0.991 0.973
Birds Asio otus ASIOTUS 1362 0.7 0.893 0.597
Birds Athene noctua ATHNOCT 4424 0.7 0.962 0.793
Birds Aythya ferina AYTFERI 195 0.8 0.987 0.94
Birds Bubo bubo BUBBUBO 2141 0.7 0.88 0.601
Birds Bubulcus ibis BUBIBIS 287 0.8 0.964 0.827
Birds Burhinus oedicnemus BUROEDI 2264 0.8 0.975 0.836
Birds Buteo buteo BUTBUTE 4504 0.7 0.867 0.546
Birds Calandrella brachydactyla CALBRAC 2245 0.8 0.992 0.909
Birds Alauda rufescens CALRUFE 246 0.8 0.985 0.903
Birds Caprimulgus europaeus CAPEURO 1979 0.8 0.899 0.618
Birds Caprimulgus ruficollis CAPRUFI 1781 0.8 0.916 0.656
Birds Carduelis spinus CARSPIN 84 0.8 0.99 0.963
Birds Hirundo daurica CECDAUR 1253 0.8 0.992 0.952
Birds Certhia brachydactyla CERBRAC 2336 0.7 0.868 0.56
Birds Cettia cetti CETCETT 4471 0.7 0.927 0.674
Birds Charadrius dubius CHADUBI 1930 0.7 0.989 0.896
Birds Chersophilus duponti CHEDUPO 3973 0.8 0.98 0.907
Birds Chlidonias hybrida CHLHYBR 1502 0.8 0.991 0.959
Birds Ciconia ciconia CICCICO 1695 0.8 0.927 0.705
Birds Ciconia nigra CICNIGR 701 0.8 0.964 0.838
Birds Cinclus cinclus CINCINC 2221 0.8 0.937 0.728
Birds Circus aeruginosus CIRAERU 5587 0.8 0.979 0.891
Birds Circus cyaneus CIRCYAN 1765 0.8 0.963 0.832
Birds Circaetus gallicus CIRGALL 1897 0.7 0.944 0.728
Birds Circus pygargus CIRPYGA 953 0.7 0.992 0.913
Birds Cisticola juncidis CISJUNC 2422 0.8 0.97 0.814
Birds Clamator glandarius CLAGLAN 2485 0.7 0.994 0.925
Birds Coccothraustes coccothraustes COCCOCC 2266 0.8 0.965 0.818
Birds Columba livia COLLIVI 2565 0.7 0.945 0.787
Birds Columba oenas COLOENA 1348 0.8 0.917 0.68
Birds Columba palumbus COLPALU 1581 0.7 0.947 0.793
Birds Corvus corone CORCORO 4157 0.8 0.936 0.701
Birds Coracias garrulus CORGARR 2999 0.8 0.927 0.705
Birds Corvus monedula CORMONE 2285 0.7 0.992 0.902
Birds Coturnix coturnix COTCOTU 5050 0.7 0.934 0.717
Birds Cuculus canorus CUCCANO 141 0.7 0.98 0.856
Birds Cyanopica cyana CYACYAN 3354 0.8 0.954 0.765
Birds Dendrocopos major DENMAJO 305 0.8 0.974 0.814
Birds Dendrocopos minor DENMINO 2248 0.8 0.95 0.751
Birds Egretta garzetta EGRGARZ 439 0.8 0.976 0.878
Birds Elanus caeruleus ELACAER 1163 0.8 0.943 0.734
Birds Emberiza calandra EMBCALA 1047 0.7 0.908 0.695
Birds Emberiza cia EMBCIA 847 0.8 0.94 0.681
Birds Emberiza cirlus EMBCIRL 700 0.7 0.991 0.901
Birds Emberiza citrinella EMBCITR 543 0.8 0.983 0.898
Birds Emberiza hortulana EMBHORT 259 0.8 0.947 0.755
Birds Erithacus rubecula ERIRUBE 77 0.8 0.905 0.619
Birds Falco naumanni FALNAUM 1362 0.8 0.93 0.723
Birds Falco peregrinus FALPERE 4424 0.8 0.99 0.892
Birds Falco subbuteo FALSUBB 195 0.7 0.975 0.819
Birds Ficedula hypoleuca FICHYPO 2141 0.8 0.975 0.899
Birds Fringilla coelebs FRICOEL 287 0.7 0.901 0.644
Birds Fulica atra FULATRA 2264 0.8 0.927 0.688
Birds Gallinula chloropus GALCHLO 4504 0.7 0.874 0.593
Birds Galerida cristata GALCRIS 2245 0.8 0.934 0.701
Birds Galerida theklae GALTHEK 246 0.8 0.943 0.710
Birds Garrulus glandarius GARGLAN 1979 0.8 0.945 0.717
Birds Gyps fulvus GYPFULV 1781 0.7 0.999 0.98
Birds Hieraaetus fasciatus HIEFASC 84 0.8 0.997 0.956
Birds Hieraaetus pennatus HIEPENN 1253 0.7 0.99 0.889
Birds Himantopus himantopus HIMHIMA 2336 0.8 0.921 0.668
Birds Ixobrychus minutus IXOMINU 4471 0.8 0.991 0.944
Birds Jynx torquilla JYNTORQ 1930 0.7 0.989 0.891
Birds Lanius collurio LANCOLL 3973 0.8 0.971 0.855
Birds Lanius excubitor LANEXCU 1502 0.7 0.885 0.611
Birds Lanius senator LANSENA 1695 0.8 0.947 0.761
Birds Larus ridibundus LARRIDI 701 0.8 0.994 0.968
Birds Loxia curvirostra LOXCURV 2221 0.8 0.931 0.733
Birds Lullula arborea LULARBO 5587 0.7 0.99 0.897
Birds Luscinia megarhynchos LUSMEGA 1765 0.7 0.992 0.923
Birds Cyanecula svecica LUSSVEC 1897 0.8 0.995 0.969
Birds Melanocorypha calandra MELCALA 953 0.8 0.918 0.681
Birds Merops apiaster MERAPIA 2422 0.8 0.938 0.717
Birds Milvus migrans MILMIGR 2485 0.7 0.976 0.835
Birds Milvus milvus MILMILV 2266 0.8 0.938 0.727
Birds Monticola saxatilis MONSAXA 2565 0.8 0.941 0.751
Birds Monticola solitarius MONSOLI 1348 0.8 0.992 0.908
Birds Motacilla alba MOTALBA 1581 0.7 0.971 0.864
Birds Motacilla cinerea MOTCINE 4157 0.8 0.94 0.7
Birds Motacilla flava MOTFLAV 2999 0.8 0.97 0.836
Birds Muscicapa striata MUSSTRI 2285 0.7 0.977 0.835
Birds Neophron percnopterus NEOPERC 5050 0.7 0.97 0.876
Birds Nycticorax nycticorax NYCNYCT 141 0.8 0.995 0.974
Birds Oenanthe hispanica OENHISP 3354 0.8 0.909 0.686
Birds Oenanthe leucura OENLEUC 305 0.8 0.945 0.754
Birds Oenanthe oenanthe OENOENA 2248 0.8 0.923 0.674
Birds Oriolus oriolus ORIORIO 439 0.7 0.91 0.666
Birds Otis tarda OTITARD 1163 0.8 0.961 0.797
Birds Otus scops OTUSCOP 1047 0.7 0.925 0.695
Birds Periparus ater PARATER 847 0.8 0.92 0.669
Birds Parus caeruleus PARCAER 700 0.7 0.884 0.599
Birds Parus cristatus PARCRIS 543 0.8 0.985 0.863
Birds Parus major PARMAJO 259 0.7 0.935 0.745
Birds Passer hispaniolensis PASHISP 77 0.8 0.942 0.736
Birds Passer montanus PASMONT 1362 0.7 0.869 0.541
Birds Pernis apivorus PERAPIV 4424 0.8 0.937 0.736
Birds Perdix perdix PERPERD 195 0.8 0.993 0.954
Birds Petronia petronia PETPETR 2141 0.8 0.905 0.63
Birds Phasianus colchicus PHACOLC 287 0.8 0.997 0.985
Birds Phoenicurus ochruros PHOOCHR 2264 0.8 0.91 0.632
Birds Phoenicurus phoenicurus PHOPHOE 4504 0.8 0.949 0.77
Birds Phylloscopus bonelli PHYBONE 2245 0.8 0.906 0.626
Birds Phylloscopus collybita PHYCOLL 246 0.8 0.922 0.678
Birds Phylloscopus ibericus PHYIBER 1979 0.8 0.935 0.729
Birds Pica pica PICPICA 1781 0.7 0.86 0.536
Birds Picus viridis PICVIRI 84 0.7 0.868 0.551
Birds Podiceps cristatus PODCRIS 1253 0.8 0.978 0.889
Birds Podiceps nigricollis PODNIGR 2336 0.8 0.993 0.962
Birds Prunella collaris PRUCOLL 4471 0.8 0.994 0.957
Birds Prunella modularis PRUMODU 1930 0.8 0.976 0.844
Birds Pterocles alchata PTEALCH 3973 0.8 0.974 0.877
Birds Pterocles orientalis PTEORIE 1502 0.8 0.968 0.84
Birds Ptyonoprogne rupestris PTYRUPE 1695 0.8 0.992 0.902
Birds Pyrrhocorax graculus PYRGRAC 701 0.8 0.992 0.947
Birds Pyrrhula pyrrhula PYRPYRR 2221 0.8 0.917 0.681
Birds Rallus aquaticus RALAQUA 5587 0.7 0.995 0.948
Birds Recurvirostra avosetta RECAVOS 1765 0.8 0.99 0.945
Birds Regulus ignicapillus REGIGNI 1897 0.8 0.928 0.693
Birds Regulus regulus REGREGU 953 0.8 0.928 0.899
Birds Remiz pendulinus REMPEND 2422 0.8 0.966 0.824
Birds Riparia riparia RIPRIPA 2485 0.7 0.993 0.932
Birds Saxicola rubetra SAXRUBE 2266 0.8 0.978 0.888
Birds Saxicola torquatus SAXTORQ 2565 0.7 0.898 0.622
Birds Serinus citrinella SERCITR 1348 0.8 0.984 0.904
Birds Sitta europaea SITEURO 1581 0.8 0.949 0.736
Birds Sterna nilotica STENILO 4157 0.8 0.996 0.981
Birds Strix aluco STRALUC 2999 0.7 0.991 0.896
Birds Streptopelia decaocto STRDECA 2285 0.7 0.898 0.651
Birds Streptopelia turtur STRTURT 5050 0.7 0.927 0.697
Birds Sturnus unicolor STUUNIC 141 0.7 0.923 0.71
Birds Sylvia atricapilla SYLATRI 3354 0.7 0.991 0.902
Birds Sylvia borin SYLBORI 305 0.8 0.931 0.712
Birds Sylvia cantillans SYLCANT 2248 0.8 0.896 0.602
Birds Sylvia communis SYLCOMM 439 0.7 0.899 0.606
Birds Sylvia conspicillata SYLCONS 1163 0.8 0.947 0.747
Birds Sylvia hortensis SYLHORT 1047 0.7 0.983 0.881
Birds Sylvia melanocephala SYLMELA 847 0.8 0.926 0.663
Birds Sylvia undata SYLUNDA 700 0.7 0.906 0.643
Birds Tachybaptus ruficollis TACRUFI 543 0.7 0.967 0.817
Birds Tetrax tetrax TETTETR 259 0.8 0.988 0.913
Birds Tichodroma muraria TICMURA 77 0.8 0.997 0.975
Birds Tringa totanus TRITOTA 1362 0.8 0.994 0.98
Birds Troglodytes troglodytes TROTROG 4424 0.8 0.931 0.667
Birds Turdus philomelos TURPHIL 195 0.8 0.936 0.704
Birds Turdus viscivorus TURVISC 2141 0.7 0.896 0.637
Birds Tyto alba TYTALBA 287 0.7 0.947 0.749
Birds Upupa epops UPUEPOP 2264 0.7 0.904 0.66
Birds Vanellus vanellus VANVANE 4504 0.8 0.979 0.927
Reptilia Acanthodactylus erythrurus AER 2245 0.7 0.932 0.73
Reptilia Anguis fragilis AFR 246 0.8 0.957 0.781
Reptilia Blanus cinereus BCI 1979 0.8 0.914 0.655
Reptilia Coronella austriaca CAU 1781 0.8 0.954 0.787
Reptilia Chalcides bedriagai CBE 84 0.7 0.993 0.943
Reptilia Coronella girondica CGI 1253 0.7 0.932 0.715
Reptilia Chalcides striatus CST 2336 0.7 0.993 0.924
Reptilia Emys orbicularis spp. EOR 4471 0.8 0.996 0.954
Reptilia Hemorrhois hippocrepis HHI 1930 0.8 0.918 0.692
Reptilia Iberolacerta monticola spp. IMO 3973 0.8 0.995 0.965
Reptilia Lacerta schreiberi LSC 1502 0.8 0.971 0.831
Reptilia Macroprotodon brevis spp. MBR 1695 0.8 0.943 0.732
Reptilia Mauremys leprosa MLE 701 0.8 0.918 0.661
Reptilia Malpolon monspessulanus MMO 2221 0.7 0.973 0.868
Reptilia Natrix astreptophora NAS 5587 0.7 0.866 0.543
Reptilia Natrix maura NMA 1765 0.7 0.966 0.809
Reptilia Psammodromus algirus PAL 1897 0.8 0.916 0.677
Reptilia Podarcis bocagei PBO 953 0.8 0.994 0.95
Reptilia Podarcis guadarramae PGU 2422 0.7 0.984 0.885
Reptilia Timon lepidus spp. TLE 2485 0.7 0.944 0.746
Reptilia Tarentola mauritanica TMR 2266 0.8 0.914 0.674
Reptilia Vipera latastei VLA 2565 0.7 0.994 0.931
Reptilia Vipera seoanei VSE 1348 0.8 0.986 0.93
Reptilia Zamenis scalaris ZSC 1581 0.7 0.866 0.574

The daily climatic data of temperature and precipitation were retrieved from the E-OBS database v.20.0e (Cornes et al. 2018), from 1989 to 2005. Future climatic data were developed from the following model chains in order to account for potential stochasticity of climate model projections: CNRM-CERFACS-CNRM-CM5 (CNRM), ICHEC-EC-EARTH (ICHEC), IPSL-IPSL-CM5A-MR (IPSL) and MPI-M-MPI-ESM-LR (MPI) models, generated within the EURO-CORDEX project (Jacob et al. 2020) and is available for two Representative Concentration Pathways, one intermediate scenario where emissions start to decline after 2040 (RCP 4.5) and one extreme scenario where emissions experience a continuous increase (RCP 8.5). Climate model data were bias-corrected using quantile mapping and E-OBS as a baseline for the overlapping period between EURO-CORDEX and E-OBS (1989-2005). Both historical and future climate datasets contain three variables: daily total precipitation, maximum and minimum temperatures. For the data collected, temporal and spatial (Biosphere Reserve of Meseta Ibérica and the Iberian Peninsula) domains were extracted and data were bilinearly interpolated to common 9 km grids. Subsequently, a spatial downscaling of temperatures was performed, using the digital elevation model from the Shuttle Radar Topography Mission (SRTM) databases, at 1 km grid resolution and the vertical temperature gradient (altitudinal correction). Precipitation totals were bilinearly interpolated to the same 1 km grid.

The main climate variables (i.e. daily precipitation, maximum temperature and minimum temperature) were used to calculate 19 bioclimatic variables through the “dismo” package from the R software v.4.0.5 (https://www.r-project.org). A Variance Inflation Factor (VIF) analysis between the bioclimatic variables and Spearman correlation tests were conducted using the “usdm” package of R software v.4.0.5 (Suppl. material 1). Highly correlated variables (VIF > 3 and Spearman correlation > 0.7 or < -0.7) were excluded to avoid multicollinearity issues (Guisan et al. 2017). Eight bioclimatic predictors were ultimately selected and implemented in the species distribution models (SDMs; Table 2).

Table 2.

Description of the bioclimatic variables used in species distribution models. The code, name, units and the regional (Iberian Peninsula) and local (Biosphere Reserve of Meseta Ibérica) ranges are indicated for each variable.

Code Variable name Units Iberian Peninsula Meseta Ibérica
BIO3 Isothermality Coefficient 25 – 43 33 - 40
BIO4 Temperature Seasonality Coefficient 387 - 870 666 - 813
BIO10 Mean Temperature of Warmest Quarter ºC 11.2 – 28.4 15.2 – 26.8
BIO11 Mean Temperature of Coldest Quarter ºC -7.8 – 12.9 -3.1 – 6.7
BIO15 Precipitation Seasonality Coefficient 23 – 94 47 - 76
BIO16 Precipitation of Wettest Quarter mm 200 - 2200 510 - 1110
BIO17 Precipitation of Driest Quarter mm 0 - 470 0 - 130
BIO19 Precipitation of Coldest Quarter mm 30 - 1130 120 - 470

Single-species ensemble models were built for each species at the Iberian Peninsula scale using the “biomod2” R package (Thuiller et al. 2009; http://r-forge.r-project.org/R/?group_id=302) at 10 km resolution. Although the original climate data were obtained at 9 x 9 km, the SDMs were performed at 10 x 10 km to match the spatial resolution of the Atlases' data. Then, the modelling of the climate suitability (hereafter “climate species models”) for each species using the aforementioned bioclimatic variables for 2005 (derived from the mean between 1989 and 2005) was conducted. The ensemble models were built using six modelling techniques (specifically, Generalised Linear Models, Generalised Addictive Models, Random Forests, Artificial Neural Networks, Gradient Boosting Models and Multiple Adaptive Regression Splines), in order to deal with inter-model variabilities (Thuiller et al. 2009). A repeated (10 times) split-sample approach was used to allow independency between model calibration and model evaluation. Each model was trained using 80% of the data, while the remaining 20% were used for model validation using the area under the curve (AUC) of a Receiver-Operating Characteristic (ROC) curve and the True Skill Statistics (TSS). An ensemble-forecasting framework was then applied by stacking the single-species models using a weighted average approach available in “biomod2”, using AUC values as model weights.

The ensemble models were then projected to the Meseta Ibérica at 1 km resolution for the historical (1989-2005; Fig. 2) and future (2021-2050) periods for the four climate models and two RCP scenarios (Fig. 3). Finally, ensemble model predictions were reclassified into binary presence/absence maps through ROC optimised thresholds available in the “biomod2” package (see Thuiller et al. 2009).

This dataset contributes towards updating the current knowledge on the potential effects of climate change on the distribution of three main taxonomic groups in one of the largest Biosphere Reserves in Europe. In general, a wide range of species responses to climate change were observed, which might be explained by species-specific ecological preferences. The extent of species responses varied according to the four climate models due to the potential stochasticity of climate projections, but the predicted positive or negative climatic effects were congruent amongst all models for each species (see Fig. 3). According to the SDMs, the majority of species are expected to be negatively affected by climate change scenarios (see Fig. 3). In fact, climatic suitable areas for 52% and 57% of the species are predicted to decrease under the intermediate (RCP 4.5) and extreme (RCP 8.5) climate change scenarios, respectively (see example in Fig. 3). Future climatic instabilities might contribute to distribution contractions and shifts, which might increase species vulnerability to extinction due to stochastic effects. Nonetheless, future studies should focus on combining the effects of land-use change and climate factors, in order to improve model predictive accuracy of future impacts on species distributions and, thus, to better support conservation planning and actions in the study area.

Geographic coverage

Description

The geographic range of the data covers the entire continental area of the Iberian Peninsula at 10 km of spatial resolution (45.158ºN and 35.347ºN Latitude; 9.560ºW and 3.889ºE Longitude) and the Transboundary Biosphere Reserve of Meseta Ibérica at 1 km of spatial resolution (42.384ºN and 40.588ºN Latitude; 7.692ºW and 5.613ºW Longitude).

Coordinates

40.588 and 42.384 Latitude; -7.692 and -5.613 Longitude.

Temporal coverage

Notes

Climate data cover the historical period between 1989 and 2005 (daily data) and a future period between 2020 and 2050 (daily data of four climate models under the RCP 4.5 and RCP 8.5 scenarios).

Species distribution models (climate species models) for the 207 vertebrate species cover the historical period of 2005 (average of the bioclimatic variables between 1989 and 2005) and a future period of 2050 (average between 2020 and 2050, for each of the four climate models and RCP scenarios).

Usage licence

Usage licence

Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title

Climate models and species distribution models of amphibians, birds and reptiles of the Iberian peninsula and the Biosphere Reserve of Meseta Ibérica)

Number of data sets

2

Data set 1.

Data set name

Climate models

Description

Daily climate variables (daily precipitation, maximum temperature and minimum temperature) for a historical (1989-2005) and future period (2021-2050), for four climate models (CNRM, ICHEC, IPSL and MPI) and two Representative Concentration Pathways (RCP 4.5 and 8.5). Climatic variables are provided at 9 × 9 km resolution for the Iberian Peninsula (only for the historical period) and at 1 × 1 km and for the Transboundary Biosphere Reserve of Meseta Ibérica (both periods). Data divided into two parts.

Data set 1.

Column labelColumn description
Files of the historic period - AREA_EOBS_H_ALT_VAR_1 Code description - AREA refers to the Iberian Peninsula (PI) or Meseta Ibérica (MI), EOBS to the historic climatic dataset of reference (E-OBS), H to the historical period (H), ALT to the altitudinal-based correction of climate variables, VAR to the three provided variables (RR - daily preciptation; TMAX - Maximum temperature; TMIN - Minimum temperature) and 1 to the spatial resolution (1 km).
Files of the future period - MI_MODEL_RCP_MR_ALT_VAR_1 Code description - MI refers to the Meseta Ibérica, MODEL to the climate model used (CNRM-CERFACS-CNRM-CM5 - CNRM; ICHEC-EC-EARTH - ICHEC; IPSL-IPSL-CM5A-MR - IPSL; MPI-M-MPI-ESM-LR - MPI), RCP to the Representative Concentration Pathway (RCP 4.5 - 45; RCP 8.5 - 85), MR to the future period, ALT to the altitudinal-based correction of climate variables, VAR to the three provided variables (RR - daily preciptation; TMAX - Maximum temperature; TMIN - Minimum temperature) and 1 to the spatial resolution (1 km).

Data set 2.

Data set name

Species distribution models

Description

Species distribution models of 207 vertebrates distributed in the Iberian Peninsula and the Transboundary Biosphere Reserve of Meseta Ibérica. The models are available at 10 × 10 km resolution for the Iberian Peninsula (climate models for 2005). Model projections are available for 2005 and 2050 (for the CNRM, ICHEC, IPSL and MPI climate models and the RCP 4.5 and RCP 8.5 scenarios) for the Biosphere Reserve at 1 × 1 km resolution. Data divided into two parts.

Data set 2.

Column labelColumn description
Climate models Species distribution models of 207 vertebrates for 2005 and 2050

Supplementary Material

Supplementary material 1

Pearson correlation analysis between bioclimatic variables

Data type

Statistical analyses

File: oo_524471.pdf

João C. Campos; Sara Rodrigues; Teresa Freitas; João A. Santos; João P. Honrado, Adrián Regos

Acknowledgements

This research was supported by Portuguese national funds through FCT - Foundation for Science and Technology, I.P., under the FirESmart project (PCIF/MOG/0083/2017) and by project INMODES (CGL2017-89999-C2-2-R), funded by the Spanish Ministry of Science and Innovation. AR was supported by the Xunta de Galicia (ED481B2016/084-0) and the IACOBUS programme (INTERREG V-A España–Portugal, POCTEP 2014-2020). This work was also supported by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020.

Author contributions

Draft preparation: JCC. Analyses and preparation of climate data: TF, JAS, JCC. Species distribution modelling and data preparation: SR, JCC. Visualisation: JCC. Review and editing: all authors.

References

  • Araújo M. B., Anderson R. P., Márcia Barbosa A., Beale C. M., Dormann C. F., Early Regan, Garcia R. A., Guisan Antoine, Maiorano Luigi, Naimi Babak, O’Hara Robert B., Zimmermann N. E., Rahbek Carsten. Standards for distribution models in biodiversity assessments. Science Advances. 2019;5(1):eaat4858. doi: 10.1126/sciadv.aat4858. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Cornes Richard C., van der Schrier Gerard, van den Besselaar Else J. M., Jones Philip D. An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres. 2018;123(17):9391–9409. doi: 10.1029/2017jd028200. [CrossRef] [Google Scholar]
  • Atlas Equipa. Atlas das Aves Nidificantes em Portugal (1999-2005) In: , editor. Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assrio & Alvim; Lisboa: 2008. [Google Scholar]
  • Guisan A., Thuiller W., Zimmermann N. E. Habitat suitability and distribution models: with applications in R. Cambridge University Press; Cambridge: 2017. [CrossRef] [Google Scholar]
  • Jacob Daniela, Teichmann Claas, Sobolowski Stefan, Katragkou Eleni, Anders Ivonne, Belda Michal, Benestad Rasmus, Boberg Fredrik, Buonomo Erasmo, Cardoso R. M., Casanueva Ana, Christensen O B., Christensen J H, Coppola Erika, De Cruz Lesley, Davin E. L., Dobler Andreas, Domínguez Marta, Fealy Rowan, Fernandez Jesus, Gaertner M A, García-Díez Markel, Giorgi Filippo, Gobiet Andreas, Goergen Klaus, Gómez-Navarro J J, Alemán J J G, Gutiérrez Claudia, Gutiérrez J M., Güttler Ivan, Haensler Andreas, Halenka Tomáš, Jerez Sonia, Jiménez-Guerrero Pedro, Jones R. G., Keuler Klaus, Kjellström Erik, Knist Sebastian, Kotlarski Sven, Maraun Douglas, van Meijgaard Erik, Mercogliano Paola, Montávez J. P., Navarra Antonio, Nikulin Grigory, de Noblet-Ducoudré Nathalie, Panitz H - J, Pfeifer Susanne, Piazza Marie, Pichelli Emanuela, Pietikäinen J - P, Prein A F., Preuschmann Swantje, Rechid Diana, Rockel Burkhardt, Romera Raquel, Sánchez Enrique, Sieck Kevin, Soares P. M. M., Somot Samuel, Srnec Lidija, Sørland S L, Termonia Piet, Truhetz Heimo, Vautard Robert, Warrach-Sagi Kirsten, Wulfmeyer Volker. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change. 2020;20(2):51. doi: 10.1007/s10113-020-01606-9. [CrossRef] [Google Scholar]
  • Loureiro A., Almeida N., Carretero M. A., Paulo O. S. Atlas dos anfíbios e répteis de Portugal In: , editor. Instituto da Conservação da Natureza e da Biodiversidade. Lisboa: 2008. 257 [Google Scholar]
  • Martí R., Del Moral J. C. Atlas de las aves reproductoras de España. , editor. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitologa 2003
  • Navarro Laetitia M., Pereira Henrique M. Rewilding abandoned landscapes in Europe. Ecosystems. 2012;15(6):900–912. doi: 10.1007/s10021-012-9558-7. [CrossRef] [Google Scholar]
  • Newbold Tim. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences. 2018;285(1881) doi: 10.1098/rspb.2018.0792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Nogués-Bravo David, Rodríguez-Sánchez Francisco, Orsini Luisa, de Boer Erik, Jansson Roland, Morlon Helene, Fordham Damien A., Jackson Stephen T. Cracking the code of biodiversity responses to past climate change. Trends in Ecology & Evolution. 2018;33(10):765–776. doi: 10.1016/j.tree.2018.07.005. [PubMed] [CrossRef] [Google Scholar]
  • Pausas Juli G, Millán Millán M. Greening and browning in a climate change hotspot: The Mediterranean Basin. BioScience. 2019;69(2):143–151. doi: 10.1093/biosci/biy157. [CrossRef] [Google Scholar]
  • Pecl Gretta T., Araújo Miguel B., Bell Johann D., Blanchard Julia, Bonebrake Timothy C., Chen I-Ching, Clark Timothy D., Colwell Robert K., Danielsen Finn, Evengård Birgitta, Falconi Lorena, Ferrier Simon, Frusher Stewart, Garcia Raquel A., Griffis Roger B., Hobday Alistair J., Janion-Scheepers Charlene, Jarzyna Marta A., Jennings Sarah, Lenoir Jonathan, Linnetved Hlif I., Martin Victoria Y., McCormack Phillipa C., McDonald Jan, Mitchell Nicola J., Mustonen Tero, Pandolfi John M., Pettorelli Nathalie, Popova Ekaterina, Robinson Sharon A., Scheffers Brett R., Shaw Justine D., Sorte Cascade J. B., Strugnell Jan M., Sunday Jennifer M., Tuanmu Mao-Ning, Vergés Adriana, Villanueva Cecilia, Wernberg Thomas, Wapstra Erik, Williams Stephen E. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355(6332):eaai9214. doi: 10.1126/science.aai9214. [PubMed] [CrossRef] [Google Scholar]
  • Pleguezuelos J. M., Marquez R., Lizana M. Atlas y Libro Rojo de los anfibios y reptiles de España. , editor. 587Dirección General de Conservación de la Naturaleza-Asociación Herpetologica Española. 2002
  • Raven Peter H., Wagner David L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences. 2021;118(2) doi: 10.1073/pnas.2002548117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Sil Ângelo, Fernandes Paulo M., Rodrigues Ana Paula, Alonso Joaquim M., Honrado João P., Perera Ajith, Azevedo João C. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosystem Services. 2019;36 doi: 10.1016/j.ecoser.2019.100908. [CrossRef] [Google Scholar]
  • Sillero Neftali, Campos João, Bonardi Anna, Corti Claudia, Creemers Raymond, Crochet Pierre-Andre, Crnobrnja Isailović Jelka, Denoël Mathieu, Ficetola Gentile Francesco, Gonçalves João, Kuzmin Sergei, Lymberakis Petros, de Pous Philip, Rodríguez Ariel, Sindaco Roberto, Speybroeck Jeroen, Toxopeus Bert, Vieites David R., Vences Miguel. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia. 2014;35(1):1–31. doi: 10.1163/15685381-00002935. [CrossRef] [Google Scholar]
  • Sippel Sebastian, Meinshausen Nicolai, Fischer Erich M., Székely Enikő, Knutti Reto. Climate change now detectable from any single day of weather at global scale. Nature Climate Change. 2020;10(1):35–41. doi: 10.1038/s41558-019-0666-7. [CrossRef] [Google Scholar]
  • Thuiller Wilfried, Lafourcade Bruno, Engler Robin, Araújo Miguel B. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography. 2009;32(3):369–373. doi: 10.1111/j.1600-0587.2008.05742.x. [CrossRef] [Google Scholar]
  • Triviño María, Kujala Heini, Araújo Miguel B., Cabeza Mar. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landscape Ecology. 2018;33(4):659–673. doi: 10.1007/s10980-018-0626-z. [CrossRef] [Google Scholar]
  • Turner Monica G., Calder W. John, Cumming Graeme S., Hughes Terry P., Jentsch Anke, LaDeau Shannon L., Lenton Timothy M., Shuman Bryan N., Turetsky Merritt R., Ratajczak Zak, Williams John W., Williams A. Park, Carpenter Stephen R. Climate change, ecosystems and abrupt change: science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375(1794) doi: 10.1098/rstb.2019.0105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Whittaker Robert J., Araújo Miguel B., Jepson Paul, Ladle Richard J., Watson James E. M., Willis Katherine J. Conservation biogeography: Assessment and prospect. Diversity and Distributions. 2005;11(1):3–23. doi: 10.1111/j.1366-9516.2005.00143.x. [CrossRef] [Google Scholar]


Articles from Biodiversity Data Journal are provided here courtesy of Pensoft Publishers


Wem gehört die Firma Ariel?

Ariel ist eine Marke für Waschmittel, die seit den 1960er Jahren auf dem deutschen Markt vertreten ist, und eines der meistverkauften Waschmittel Europas. Hersteller ist Procter & Gamble.

Wo wird Ariel hergestellt?

Schon in der Produktion der Ariel PODS wird Nachhaltigkeit großgeschrieben. Mit Strom aus 100 Prozent Ökostrom werden die PODS in einem Werk in Frankreich hergestellt.

Warum heißt Ariel Ariel?

Herkunft und Bedeutung Ariel ist ein hebräischer Vorname. Die Bedeutung ist nicht endgültig geklärt. Am wahrscheinlichsten ist die Bedeutung „Herd Gottes“. Gelegentlich wird der Name auch mit der Vokabel אריה in Verbindung gebracht und mit „Löwe Gottes“ übersetzt.

Wer hat Ariel Waschmittel erfunden?

Hersteller ist Procter & Gamble. Im Jahr 1966 erschien Ariel mit der Ariel-Trommel unter dem Slogan „Ariel zum Reinweichen“ erstmals auf dem deutschen Markt. Das erste Vollwaschmittel folgte 1968.